974 resultados para Active-site


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The process of human erythrocyte invasion by Plasmodium falciparum parasites involves a calcium-dependent serine protease with properties consistent with a subtilisin-like activity. This enzyme achieves the last crucial maturation step of merozoite surface protein 1 (MSP1) necessary for parasite entry into the host erythrocyte. In eukaryotic cells, such processing steps are performed by subtilisin-like maturases, known as proprotein convertases. In an attempt to characterize the MSP1 maturase, we have identified a gene that encodes a P. falciparum subtilisin-like protease (PfSUB2) whose deduced active site sequence resembles more bacterial subtilisins. Therefore, we propose that PfSUB2 belongs to a subclass of eukaryotic subtilisins different from proprotein convertases. Pfsub2 is expressed during merozoite differentiation and encodes an integral membrane protein localized in the merozoite dense granules, a secretory organelle whose contents are believed to participate in a late step of the erythrocyte invasion. PfSUB2’s subcellular localization, together with its predicted enzymatic properties, leads us to propose that PfSUB2 could be responsible for the late MSP1 maturation step and thus is an attractive target for the development of new antimalarial drugs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Insolubility of full-length HIV-1 integrase (IN) limited previous structure analyses to individual domains. By introducing five point mutations, we engineered a more soluble IN that allowed us to generate multidomain HIV-1 IN crystals. The first multidomain HIV-1 IN structure is reported. It incorporates the catalytic core and C-terminal domains (residues 52–288). The structure resolved to 2.8 Å is a Y-shaped dimer. Within the dimer, the catalytic core domains form the only dimer interface, and the C-terminal domains are located 55 Å apart. A 26-aa α-helix, α6, links the C-terminal domain to the catalytic core. A kink in one of the two α6 helices occurs near a known proteolytic site, suggesting that it may act as a flexible elbow to reorient the domains during the integration process. Two proteins that bind DNA in a sequence-independent manner are structurally homologous to the HIV-1 IN C-terminal domain, suggesting a similar protein–DNA interaction in which the IN C-terminal domain may serve to bind, bend, and orient viral DNA during integration. A strip of positively charged amino acids contributed by both monomers emerges from each active site of the dimer, suggesting a minimally dimeric platform for binding each viral DNA end. The crystal structure of the isolated catalytic core domain (residues 52–210), independently determined at 1.6-Å resolution, is identical to the core domain within the two-domain 52–288 structure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mammalian xanthine oxidoreductases, which catalyze the last two steps in the formation of urate, are synthesized as the dehydrogenase form xanthine dehydrogenase (XDH) but can be readily converted to the oxidase form xanthine oxidase (XO) by oxidation of sulfhydryl residues or by proteolysis. Here, we present the crystal structure of the dimeric (Mr, 290,000) bovine milk XDH at 2.1-Å resolution and XO at 2.5-Å resolution and describe the major changes that occur on the proteolytic transformation of XDH to the XO form. Each molecule is composed of an N-terminal 20-kDa domain containing two iron sulfur centers, a central 40-kDa flavin adenine dinucleotide domain, and a C-terminal 85-kDa molybdopterin-binding domain with the four redox centers aligned in an almost linear fashion. Cleavage of surface-exposed loops of XDH causes major structural rearrangement of another loop close to the flavin ring (Gln 423—Lys 433). This movement partially blocks access of the NAD substrate to the flavin adenine dinucleotide cofactor and changes the electrostatic environment of the active site, reflecting the switch of substrate specificity observed for the two forms of this enzyme.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Old Yellow Enzyme has been shown to catalyze efficiently the NADPH-linked reduction of nitro-olefins. The reduction of the nitro-olefin proceeds in a stepwise fashion, with formation of a nitronate intermediate that is freely dissociable from the enzyme. The first step involves hydride transfer from the enzyme-reduced flavin to carbon 2 of the nitro-olefin. The protonation of the nitronate at carbon 1 to form the final nitroalkane product also is catalyzed by the enzyme and involves Tyr-196 as an active site acid/base. This residue also is involved in aci-nitro tautomerization of nitroalkanes, the first example of a nonredox reaction catalyzed by the enzyme.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The active-site cysteines of DsbA, the periplasmic disulfide-bond-forming enzyme of Escherichia coli, are kept oxidized by the cytoplasmic membrane protein DsbB. DsbB, in turn, is oxidized by two kinds of quinones (ubiquinone for aerobic and menaquinone for anaerobic growth) in the electron-transport chain. We describe the isolation of dsbB missense mutations that change a highly conserved arginine residue at position 48 to histidine or cysteine. In these mutants, DsbB functions reasonably well aerobically but poorly anaerobically. Consistent with this conditional phenotype, purified R48H exhibits very low activity with menaquinone and an apparent Michaelis constant (Km) for ubiquinone seven times greater than that of the wild-type DsbB, while keeping an apparent Km for DsbA similar to that of wild-type enzyme. From these results, we propose that this highly conserved arginine residue of DsbB plays an important role in the catalysis of disulfide bond formation through its role in the interaction of DsbB with quinones.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report development of a polymer gel with a catalytic activity that can be switched on and off when the solvent composition is changed. The gel consists of two species of monomers. The major component, N-isopropylacrylamide, makes the gel swell and shrink in response to a change in composition of ethanol/water mixtures. The minor component, vinylimidazole, which is capable of catalysis, is copolymerized into the gel network. The reaction rate for catalytic hydrolysis of p-nitrophenyl caprylate was small when the gel was swollen. In contrast, when the gel was shrunken, the reaction rate increased 5 times. The activity changes discontinuously as a function of solvent composition, thus the catalysis can be switched on and off by an infinitesimal change in solvent composition. The kinetics of catalysis by the gel in the shrunken state is well described by the Michaelis–Menten formula, indicating that the absorption of the substrate by the hydrophobic environment created by the N-isopropylacrylamide polymer in the shrunken gel is responsible for enhancement of catalytic activity. In the swollen state, the rate vs. active site concentration is linear, indicating that the substrate absorption is not a primary factor determining the kinetics. Catalytic activity of the gel is studied for substrates with various alkyl chain lengths; of those studied the switching effect is most pronounced for p-nitrophenyl caprylate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hybrid quantum mechanics/molecular mechanics calculations using Austin Model 1 system-specific parameters were performed to study the SN2 displacement reaction of chloride from 1,2-dichloroethane (DCE) by nucleophilic attack of the carboxylate of acetate in the gas phase and by Asp-124 in the active site of haloalkane dehalogenase from Xanthobacter autotrophicus GJ10. The activation barrier for nucleophilic attack of acetate on DCE depends greatly on the reactants having a geometry resembling that in the enzyme or an optimized gas-phase structure. It was found in the gas-phase calculations that the activation barrier is 9 kcal/mol lower when dihedral constraints are used to restrict the carboxylate nucleophile geometry to that in the enzyme relative to the geometries for the reactants without dihedral constraints. The calculated quantum mechanics/molecular mechanics activation barriers for the enzymatic reaction are 16.2 and 19.4 kcal/mol when the geometry of the reactants is in a near attack conformer from molecular dynamics and in a conformer similar to the crystal structure (DCE is gauche), respectively. This haloalkane dehalogenase lowers the activation barrier for dehalogenation of DCE by 2–4 kcal/mol relative to the single point energies of the enzyme's quantum mechanics atoms in the gas phase. SN2 displacements of this sort in water are infinitely slower than in the gas phase. The modest lowering of the activation barrier by the enzyme relative to the reaction in the gas phase is consistent with mutation experiments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Earth’s biota produces vast quantities of polymerized silica at ambient temperatures and pressures by mechanisms that are not understood. Silica spicules constitute 75% of the dry weight of the sponge Tethya aurantia, making this organism uniquely tractable for analyses of the proteins intimately associated with the biosilica. Each spicule contains a central protein filament, shown by x-ray diffraction to exhibit a highly regular, repeating structure. The protein filaments can be dissociated to yield three similar subunits, named silicatein α, β, and γ. The molecular weights and amino acid compositions of the three silicateins are similar, suggesting that they are members of a single protein family. The cDNA sequence of silicatein α, the most abundant of these subunits, reveals that this protein is highly similar to members of the cathepsin L and papain family of proteases. The cysteine at the active site in the proteases is replaced by serine in silicatein α, although the six cysteines that form disulfide bridges in the proteases are conserved. Silicatein α also contains unique tandem arrays of multiple hydroxyls. These structural features may help explain the mechanism of biosilicification and the recently discovered activity of the silicateins in promoting the condensation of silica and organically modified siloxane polymers (silicones) from the corresponding silicon alkoxides. They suggest the possibility of a dynamic role of the silicateins in silicification of the sponge spicule and offer the prospect of a new synthetic route to silica and siloxane polymers at low temperature and pressure and neutral pH.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Protoporphyrinogen oxidase (EC 1–3-3–4), the 60-kDa membrane-bound flavoenzyme that catalyzes the final reaction of the common branch of the heme and chlorophyll biosynthesis pathways in plants, is the molecular target of diphenyl ether-type herbicides. It is highly resistant to proteases (trypsin, endoproteinase Glu-C, or carboxypeptidases A, B, and Y), because the protein is folded into an extremely compact form. Trypsin maps of the native purified and membrane-bound yeast protoporphyrinogen oxidase show that this basic enzyme (pI > 8.5) was cleaved at a single site under nondenaturing conditions, generating two peptides with relative molecular masses of 30,000 and 35,000. The endoproteinase Glu-C also cleaved the protein into two peptides with similar masses, and there was no additional cleavage site under mild denaturing conditions. N-terminal peptide sequence analysis of the proteolytic (trypsin and endoproteinase Glu-C) peptides showed that both cleavage sites were located in putative connecting loop between the N-terminal domain (25 kDa) with the βαβ ADP-binding fold and the C-terminal domain (35 kDa), which possibly is involved in the binding of the isoalloxazine moiety of the FAD cofactor. The peptides remained strongly associated and fully active with the Km for protoporphyrinogen and the Ki for various inhibitors, diphenyl-ethers, or diphenyleneiodonium derivatives, identical to those measured for the native enzyme. However, the enzyme activity of the peptides was much more susceptible to thermal denaturation than that of the native protein. Only the C-terminal domain of protoporphyrinogen oxidase was labeled specifically in active site-directed photoaffinity-labeling experiments. Trypsin may have caused intramolecular transfer of the labeled group to reactive components of the N-terminal domain, resulting in nonspecific labeling. We suggest that the active site of protoporphyrinogen oxidase is in the C-terminal domain of the protein, at the interface between the C- and N-terminal domains.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thioredoxin 1 is a major thiol-disulfide oxidoreductase in the cytoplasm of Escherichia coli. One of its functions is presumed to be the reduction of the disulfide bond in the active site of the essential enzyme ribonucleotide reductase. Thioredoxin 1 is kept in a reduced state by thioredoxin reductase. In a thioredoxin reductase null mutant however, most of thioredoxin 1 is in the oxidized form; recent reports have suggested that this oxidized form might promote disulfide bond formation in vivo. In the Escherichia coli periplasm, the protein disulfide isomerase DsbC is maintained in the reduced and active state by the membrane protein DsbD. In a dsbD null mutant, DsbC accumulates in the oxidized form. This oxidized form is then able to promote disulfide bond formation. In both these cases, the inversion of the function of these thiol oxidoreductases appears to be due to an altered redox balance of the environment in which they find themselves. Here, we show that thioredoxin 1 attached to the alkaline phosphatase signal sequence can be exported into the E. coli periplasm. In this new environment for thioredoxin 1, we show that thioredoxin 1 can promote disulfide bond formation and, therefore, partially complement a dsbA strain defective for disulfide bond formation. Thus, we provide evidence that by changing the location of thioredoxin 1 from cytoplasm to periplasm, we change its function from a reductant to an oxidant. We conclude that the in vivo redox function of thioredoxin 1 depends on the redox environment in which it is localized.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Angiogenesis inhibitors are a novel class of promising therapeutic agents for treating cancer and other human diseases. Fumagillin and ovalicin compose a class of structurally related natural products that potently inhibit angiogenesis by blocking endothelial cell proliferation. A synthetic analog of fumagillin, TNP-470, is currently undergoing clinical trials for treatment of a variety of cancers. A common target for fumagillin and ovalicin recently was identified as the type 2 methionine aminopeptidase (MetAP2). These natural products bind MetAP2 covalently, inhibiting its enzymatic activity. The specificity of this binding is underscored by the lack of inhibition of the closely related type 1 enzyme, MetAP1. The molecular basis of the high affinity and specificity of these inhibitors for MetAP2 has remained undiscovered. To determine the structural elements of these inhibitors and MetAP2 that are involved in this interaction, we synthesized fumagillin analogs in which each of the potentially reactive epoxide groups was removed either individually or in combination. We found that the ring epoxide in fumagillin is involved in the covalent modification of MetAP2, whereas the side chain epoxide group is dispensable. By using a fumagillin analog tagged with fluorescein, His-231 in MetAP2 was identified as the residue that is covalently modified by fumagillin. Site-directed mutagenesis of His-231 demonstrated its importance for the catalytic activity of MetAP2 and confirmed that the same residue is covalently modified by fumagillin. These results, in agreement with a recent structural study, suggest that fumagillin and ovalicin inhibit MetAP2 by irreversible blockage of the active site.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The protein component of ribonuclease P (RNase P) binds to the RNA subunit, forming a functional ribonucleoprotein complex in vivo and enhancing the affinity of the precursor tRNA (pre-tRNA) substrate. Photocrosslinking experiments with pre-tRNA bound to RNase P reconstituted with the protein component of Bacillus subtilis ribonuclease P (P protein) site specifically modified with a crosslinking reagent indicate that: (i) the central cleft of P protein directly interacts with the single-stranded 5′ leader sequence of pre-tRNA, and (ii) the orientation and register of the pre-tRNA leader sequence in the central cleft places the protein component in close proximity to the active site. This unique mode of interaction suggests that the catalytic active site in RNase P occurs near the interface of RNA and protein. In contrast to other ribonucleoprotein complexes where the protein mainly stabilizes the active tertiary fold of the RNA, a critical function of the protein component of RNase P is to alter substrate specificity and enhance catalytic efficiency.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The adenylyl and guanylyl cyclases catalyze the formation of 3′,5′-cyclic adenosine or guanosine monophosphate from the corresponding nucleoside 5′-triphosphate. The guanylyl cyclases, the mammalian adenylyl cyclases, and their microbial homologues function as pairs of homologous catalytic domains. The crystal structure of the rat type II adenylyl cyclase C2 catalytic domain was used to model by homology a mammalian adenylyl cyclase C1-C2 domain pair, a homodimeric adenylyl cyclase of Dictyostelium discoideum, a heterodimeric soluble guanylyl cyclase, and a homodimeric membrane guanylyl cyclase. Mg2+ATP or Mg2+GTP were docked into the active sites based on known stereochemical constraints on their conformation. The models are consistent with the activities of seven active-site mutants. Asp-310 and Glu-432 of type I adenylyl cyclase coordinate a Mg2+ ion. The D310S and D310A mutants have 10-fold reduced Vmax and altered [Mg2+] dependence. The NTP purine moieties bind in mostly hydrophobic pockets. Specificity is conferred by a Lys and an Asp in adenylyl cyclase, and a Glu, an Arg, and a Cys in guanylyl cyclase. The models predict that an Asp from one domain is a general base in the reaction, and that the transition state is stabilized by a conserved Asn-Arg pair on the other domain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The relationship between the enzymatic and the transcriptional activity of the bifunctional protein pterin-4a-carbinolamine dehydratase/dimerization cofactor for hepatocyte nuclear factor 1 (DCoH) has been elucidated by site-directed mutagenesis. DCoH dimers harbor a binding site for hepatocyte nuclear factor 1 (HNF1), two active centers that bind pterins, and a saddle-shaped surface that resembles nucleic acid binding domains. Two domains of the protein have been selectively targeted to determine if a change in one activity affects the other. No strong correlation has been found, supporting the idea that carbinolamine dehydratase activity is not required for HNF1 binding in vitro or transcriptional coactivation in vivo. Double mutations in the active center, however, influence the in vivo transcriptional activity but not HNF1 binding. This finding suggests that some active center residues also are used during transcription, possibly for binding of another (macro)molecule. Several mutations in the saddle led to a surprising increase in transcription, therefore linking this domain to transcriptional regulation as well. The transcriptional function of DCoH therefore is composed of two parts, HNF1 binding and another contributing effect that involves the active site and, indirectly, the saddle.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ribonucleotide reductases from three ancient eubacteria, the hyperthermophilic Thermotoga maritima (TM), the radioresistant Deinococcus radiodurans (DR), and the thermophilic photosynthetic Chloroflexus aurantiacus, were found to be coenzyme-B12 (class II) enzymes, similar to the earlier described reductases from the archaebacteria Thermoplasma acidophila and Pyrococcus furiosus. Reduction of CDP by the purified TM and DR enzymes requires adenosylcobalamin and DTT. dATP is a positive allosteric effector, but stimulation of the TM enzyme only occurs close to the temperature optimum of 80–90°C. The TM and DR genes were cloned by PCR from peptide sequence information. The TM gene was sequenced completely and expressed in Escherichia coli. The deduced amino acid sequences of the two eubacterial enzymes are homologous to those of the archaebacteria. They can also be aligned to the sequence of the large protein of the aerobic E. coli ribonucleotide reductase that belongs to a different class (class I), which is not dependent on B12. Structure determinations of the E. coli reductase complexed with substrate and allosteric effectors earlier demonstrated a 10-stranded β/α-barrel in the active site. From the conservation of substrate- and effector-binding residues we propose that the B12-dependent class II enzymes contain a similar barrel.