981 resultados para Acartia clausi, egg production per female as carbon


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transgenerational plasticity (TGP), a type of maternal effect, occurs when the environment experienced by one or both the parents prior to fertilization directly translates, without changing DNA sequences, into changes in offspring reaction norms. Evidence of such effects has been found in several traits throughout many phyla, and, although of great potential importance - especially in a time of rapid climate change - TGP in thermal growth physiology had never been demonstrated for vertebrates until the first experiment on thermal TGP in sheepshead minnows, who, given sufficient time, adaptively program their offspring for maximal egg viability and growth at the temperature experienced before fertilization. This study on sheepshead minnows from South Carolina and Connecticut investigates how population, parent temperature, and offspring temperature affect egg production, size, viability, larval survival and growth rates, whether these effects provide evidence of TGP, and whether and how they vary with length of exposure time (5, 12, 19, 26, 33 and 43 days) of the parents to the new experimental temperatures of either 26°C or 32°C. Several results are consistent with those obtained in the previous TGP study, which outline a sequence of events consisting of an initial adjustment period to the new temperatures, in which egg production decreases and no signs of TGP are present, followed by a shift to TGP (towards 26-33 days of exposure) in which parents start to produce more eggs which are better adapted to the new thermal environment. Other results present new information, such as signs of TGP in the parent temperature effect on egg sizes already around 20 days of exposure. The innovative idea of populations being able to adapt to rapidly shifting environments through non-genetic mechanisms such as TGP opens new possibilities of survival of species and will have important implications on ecology, physiology, and contemporary evolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: In dimorphic seabirds, the larger sex tends to provision more than the smaller sex. In contrast, monogamy and biparental care are often associated with equal effort between the sexes. However, the few studies that have tested sex-specific effort in monomorphic seabirds have primarily examined the details of foraging at sea. Hypotheses: Parental effort is also sex-biased in a monomorphic seabird mating system for one of two reasons: (1) If females enter the period of parental care less able to invest in care due to the cost of egg production, male-biased effort may be necessary to avoid reproductive failure. (2) Alternatively, female-biased effort may occur due to the initial disparity in gamete size, particularly in species with internal fertilization. Organism: Leach’s storm-petrel (Oceanodroma leucorhoa), a monomorphic seabird with true monogamy and obligate biparental care. Site: A breeding colony of Oceanodroma leucorhoa at the Bowdoin Scientific Station on Kent Island, Bay of Fundy, New Brunswick, Canada. Methods: Across multiple breeding seasons, we assessed incubation behaviour and chickrearing behaviour through one manipulative and multiple observational studies. We assessed energetic investment by inducing feather replacement and measuring the resulting rate of feather growth during both the incubation and chick-rearing phases of parental care. Conclusions: We observed male-biased effort. Males incubated the egg for a greater proportion of time than did females and, when faced with an egg that would not hatch, males continued to incubate past the point when females abandoned it. Males made a higher percentage of total food deliveries to chicks than did females, resulting in greater mean daily food provisioning by males than by females. During chick rearing, males grew replacement feathers more slowly than did females, indicating that males were more likely to reduce their own nutritional condition while raising chicks than were females. These results support the hypothesis that females enter the period of parental care at a nutritional deficit and males must compensate to avoid reproductive failure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several studies have shown a high prevalence of keel bone deformities in commercial laying hens. The aim of this project was to assess the effects of perch material, a vitamin D feed additive (25-hydroxyvitamin D(3); HyD, DSM Nutritional Products, Basel, Switzerland), and genetics on keel bone pathology. The study consisted of 2 experiments. In the first experiment, 4,000 Lohmann Selected Leghorn hens were raised in aviary systems until 18 wk of age. Two factors were investigated: perch material (plastic or rubber-coated metal) and feed (with and without HyD). Afterward, the hens were moved to a layer house with 8 pens with 2 aviary systems. Daily feed consumption, egg production, mortality, and feather condition were evaluated. Every 6 wk, the keel bones of 10 randomly selected birds per pen were palpated and scored. In the second experiment, 2,000 Lohmann Brown (LB) hens and 2,000 Lohmann Brown parent stock (LBPS) hens were raised in a manner identical to the first experiment. During the laying period, the hens were kept in 24 identical floor pens but equipped with different perch material (plastic or rubber-coated metal). The same variables were investigated as in the first experiment. No keel bone deformities were found during the rearing period in either experiment. During the laying period, deformities gradually appeared and reached a prevalence of 35% in the first experiment and 43.8% in the second experiment at the age of 65 and 62 wk, respectively. In the first experiment, neither HyD nor the aviary system had any significant effect on the prevalence of keel bone deformities. In the second experiment, LBPS had significantly fewer moderate and severe deformities than LB, and rubber-coated metal perches were associated with a higher prevalence of keel bone deformities compared with plastic perches. The LBPS laid more but smaller eggs than the LB. Again, HyD did not affect the prevalence of keel bone deformities. However, the significant effect of breed affiliation strongly indicates a sizeable genetic component that may provide a basis for targeted selection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anaerobic digestion of food scraps has the potential to accomplish waste minimization, energy production, and compost or humus production. At Bucknell University, removal of food scraps from the waste stream could reduce municipal solid waste transportation costs and landfill tipping fees, and provide methane and humus for use on campus. To determine the suitability of food waste produced at Bucknell for high-solids anaerobic digestion (HSAD), a year-long characterization study was conducted. Physical and chemical properties, waste biodegradability, and annual production of biodegradable waste were assessed. Bucknell University food and landscape waste was digested at pilot-scale for over a year to test performance at low and high loading rates, ease of operation at 20% solids, benefits of codigestion of food and landscape waste, and toprovide digestate for studies to assess the curing needs of HSAD digestate. A laboratory-scale curing study was conducted to assess the curing duration required to reduce microbial activity, phytotoxicity, and odors to acceptable levels for subsequent use ofhumus. The characteristics of Bucknell University food and landscape waste were tested approximately weekly for one year, to determine chemical oxygen demand (COD), total solids (TS), volatile solids (VS), and biodegradability (from batch digestion studies). Fats, oil, and grease and total Kjeldahl nitrogen were also tested for some food waste samples. Based on the characterization and biodegradability studies, Bucknell University dining hall food waste is a good candidate for HSAD. During batch digestion studies Bucknell University food waste produced a mean of 288 mL CH4/g COD with a 95%confidence interval of 0.06 mL CH4/g COD. The addition of landscape waste for digestion increased methane production from both food and landscape waste; however, because the landscape waste biodegradability was extremely low the increase was small.Based on an informal waste audit, Bucknell could collect up to 100 tons of food waste from dining facilities each year. The pilot-scale high-solids anaerobic digestion study confirmed that digestion ofBucknell University food waste combined with landscape waste at a low organic loading rate (OLR) of 2 g COD/L reactor volume-day is feasible. During low OLR operation, stable reactor performance was demonstrated through monitoring of biogas production and composition, reactor total and volatile solids, total and soluble chemical oxygendemand, volatile fatty acid content, pH, and bicarbonate alkalinity. Low OLR HSAD of Bucknell University food waste and landscape waste combined produced 232 L CH4/kg COD and 229 L CH4/kg VS. When OLR was increased to high loading (15 g COD/L reactor volume-day) to assess maximum loading conditions, reactor performance became unstable due to ammonia accumulation and subsequent inhibition. The methaneproduction per unit COD also decreased (to 211 L CH4/kg COD fed), although methane production per unit VS increased (to 272 L CH4/kg VS fed). The degree of ammonia inhibition was investigated through respirometry in which reactor digestate was diluted and exposed to varying concentrations of ammonia. Treatments with low ammoniaconcentrations recovered quickly from ammonia inhibition within the reactor. The post-digestion curing process was studied at laboratory-scale, to provide a preliminary assessment of curing duration. Digestate was mixed with woodchips and incubated in an insulated container at 35 °C to simulate full-scale curing self-heatingconditions. Degree of digestate stabilization was determined through oxygen uptake rates, percent O2, temperature, volatile solids, and Solvita Maturity Index. Phytotoxicity was determined through observation of volatile fatty acid and ammonia concentrations.Stabilization of organics and elimination of phytotoxic compounds (after 10–15 days of curing) preceded significant reductions of volatile sulfur compounds (hydrogen sulfide, methanethiol, and dimethyl sulfide) after 15–20 days of curing. Bucknell University food waste has high biodegradability and is suitable for high-solids anaerobic digestion; however, it has a low C:N ratio which can result in ammonia accumulation under some operating conditions. The low biodegradability of Bucknell University landscape waste limits the amount of bioavailable carbon that it can contribute, making it unsuitable for use as a cosubstrate to increase the C:N ratio of food waste. Additional research is indicated to determine other cosubstrates with higher biodegradabilities that may allow successful HSAD of Bucknell University food waste at high OLRs. Some cosubstrates to investigate are office paper, field residues, or grease trap waste. A brief curing period of less than 3 weeks was sufficient to produce viable humus from digestate produced by low OLR HSAD of food and landscape waste.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Partial or full life-cycle tests are needed to assess the potential of endocrine-disrupting compounds (EDCs) to adversely affect development and reproduction of fish. Small fish species such as zebrafish, Danio rerio, are under consideration as model organisms for appropriate test protocols. The present study examines how reproductive effects resulting from exposure of zebrafish to the synthetic estrogen 17alpha-ethinylestradiol (EE2) vary with concentration (0.05 to 10 ng EE2 L(-1), nominal), and with timing/duration of exposure (partial life-cycle, full life-cycle, and two-generation exposure). Partial life-cycle exposure of the parental (F1) generation until completion of gonad differentiation (0-75 d postfertilization, dpf) impaired juvenile growth, time to sexual maturity, adult fecundity (egg production/female/day), and adult fertilization success at 1.1 ng EE2 L(-1) and higher. Lifelong exposure of the F1 generation until 177 dpf resulted in lowest observed effect concentrations (LOECs) for time to sexual maturity, fecundity, and fertilization success identical to those of the developmental test (0-75 dpf), but the slope of the concentration-response curve was steeper. Reproduction of zebrafish was completely inhibited at 9.3 ng EE2 L(-1), and this was essentially irreversible as a 3-mo depuration restored fertilization success to only a very low rate. Accordingly, elevated endogenous vitellogenin (VTG) synthesis and degenerative changes in gonad morphology persisted in depurated zebrafish. Full life-cycle exposure of the filial (F2) generation until 162 dpf impaired growth, delayed onset of spawning and reduced fecundity and fertilization success at 2.0 ng EE2 L(-1). In conclusion, results show that the impact of estrogenic agents on zebrafish sexual development and reproductive functions as well as the reversibility of effects, varies with exposure concentration (reversibility at < or = 1.1 ng EE2 L(-1) and irreversibility at 9.3 ng EE2 L(-1)), and between partial and full life-cycle exposure (exposure to 10 ng EE2 L(-1) during critical period exerted no permanent effect on sexual differentiation, but life-cycle exposure did).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antarctic terrestrial ecosystems have poorly developed soils and currently experience one of the greatest rates of climate warming on the globe. We investigated the responsiveness of organic matter decomposition in Maritime Antarctic terrestrial ecosystems to climate change, using two study sites in the Antarctic Peninsula region (Anchorage Island, 67°S; Signy Island, 61°S), and contrasted the responses found with those at the cool temperate Falkland Islands (52°S). Our approach consisted of two complementary methods: (1) Laboratory measurements of decomposition at different temperatures (2, 6 and 10 °C) of plant material and soil organic matter from all three locations. (2) Field measurements at all three locations on the decomposition of soil organic matter, plant material and cellulose, both under natural conditions and under experimental warming (about 0.8 °C) achieved using open top chambers. Higher temperatures led to higher organic matter breakdown in the laboratory studies, indicating that decomposition in Maritime Antarctic terrestrial ecosystems is likely to increase with increasing soil temperatures. However, both laboratory and field studies showed that decomposition was more strongly influenced by local substratum characteristics (especially soil N availability) and plant functional type composition than by large-scale temperature differences. The very small responsiveness of organic matter decomposition in the field (experimental temperature increase <1 °C) compared with the laboratory (experimental increases of 4 or 8 °C) shows that substantial warming is required before significant effects can be detected.