957 resultados para ALCOHOL FUEL CELLS
Resumo:
We build a model that incorporates the effect of the innovative ""flex"" car, an automobile that is able to run with either gasoline or alcohol, on the dynamics of fuel prices in Brazil. Our model shows that differences regarding fuel prices will now depend on the proportions of alcohol, gasoline and flex cars in the total stock. Conversely, the demand for each type of car will also depend on the expected future prices of alcohol and gasoline (in addition to the car prices). The model reflects our findings that energy prices are tied in the long run and that causality runs stronger from gasoline to alcohol. The estimated error correction parameter is stable, implying that the speed of adjustment towards equilibrium remains unchanged. The latter result is probably due to a still small fraction of flex cars in the total stock (approx. 5%), despite the fact that its sales nearly reached 100% in 2006. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This paper describes the use of the electrostatic layer-by-layer (LbL) technique for the preparation of bioanodes with potential application in ethanol/O(2) biofuel cells. More specifically, the LbL technique was employed for immobilization of dehydrogenase enzymes and polyamidoamine (PAMAM) dendrimers onto carbon paper support. Both mono (anchoring only the enzyme alcohol dehydrogenase, ADH) and bienzymatic (anchoring both ADH and aldehyde dehydrogenase, AldDH) systems were tested. The amount of ADH deposited onto the Toray (R) paper was 95 ng cm(-2) per bilayer. Kinetic studies revealed that the LbL technique enables better control of enzyme disposition on the bioanode, as compared with the results obtained with the bioanodes prepared by the passive adsorption technique. The power density values achieved for the mono-enzymatic system as a function of the enzyme load ranged from 0.02 to 0.063 mW cm(-2) for the bioanode containing 36 ADH bilayers. The bioanodes containing a gas diffusion layer (GDL) displayed enhanced performance, but their mechanical stability must be improved. The bienzymatic system generated a power density of 0.12 mW cm(-2). In conclusion, the LbL technique is a very attractive approach for enzyme immobilization onto carbon platform, since it enables strict control of enzyme disposition on the bioanode surface with very low enzyme consumption. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This paper describes the preparation and application of a novel bioanode for use in ethanol/O(2) biofuel cells based upon immobilization of alcohol dehydrogenase (ADH) and polyamidoamine (PAMAM) dendrimers onto carbon cloth platforms. The power density measurements indicated a direct relationship between the amount of anchored ADH and the anode power values, which increased upon enzyme loading. The power density values ranged from 0.04 to 0.28 mW cm(-2), and the highest power density was achieved with the bioanode prepared with 28 U of ADH, which provided a power density of 0.28 mW cm(-2) at 0.3 V. The latter power output values were the maximum observed, even for higher enzyme concentrations. Stability of the bioanodes was quite satisfactory, since there was no appreciable reduction of enzymatic activity during the measurements. The method of bioanode preparation described here has proven to be very effective. The PAMAM dendrimer represents a friendly environment for the immobilization of enzymes, and it is stable and capable of generating high power density compared to other immobilization methods. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The authors aim to critically examine empirical research on the effects of alcohol on HIV and AIDS from the immunological and behavioral fields. In vitro immunological studies demonstrate that social drinking increases the susceptibility of human cells to HIV infection. Animal studies show that acute and chronic alcohol ingestion increases rare of progression from retrovirus to clinical illness. In humans with HIV, no experimental evidence shows that alcohol is a cofactor of AIDS. Findings from behavioral studies show that a link between social drinking and risk of HIV is weak. No experimental evidence demonstrates that chronic drinking influences rate and course of disease progression to AIDS in humans who are HIV+. It is premature to promote the role of alcohol as a cofactor in HIV and AIDS.
Resumo:
The study investigated whether chronic ethanol (ETH) intake and subsequent ETH exposure of cell cultures affects osteoblast differentiation by evaluating key parameters of in vitro osteogenesis. Rats were treated with 5-20% (0.85-3.43 mM) ETH, increasing by 5% per week for a period of 4 weeks (habituation), after which the 20% level was maintained for 15 days (chronic intake). Bone-marrow stem cells from control (CONT) or ETH-treated rats were cultured in osteogenic medium which was either supplemented (ETH) or not supplemented (CONT) with 1.3 mm ethanol. Thus, four groups relating to rat treatment/culture supplementation were evaluated: (1) CONT/CONT, (2) ETH/CONT, (3) CONT/ETH and (4) ETH/ETH Cell morphology, proliferation and viability, total protein content, alkaline phosphatase (ALP) activity and bone-like nodule formation were evaluated. Chronic ethanol intake significantly reduced both food and liquid consumption and body weight gain. No difference was seen in cell morphology among treatments. Cell number was affected at 7 and 10 days as follows: CONT/CONT = CONT/ETH < ETH/CONT = ETH/ETH. Doubling time between 3 and 10 days was greater in groups of CONT animals: ETH/ETH = ETH/CONT < CONT/ETH = CONT/CONT. Cell viability and ALP activity were not affected by either animal treatment or culture exposure to ethanol. At day 21, the total protein content was affected as follows: ETH/ETH = CONT/ETH < ETH/CONT = CONT/CONT. Bone-like nodule formation was affected as follows: ETH/ETH < CONT/ETH < ETH/CONT < CONT/CONT. These results show that chronic ethanol intake, followed by the exposure of osteoblasts to ethanol, inhibited the differentiation of osteoblasts, as indicated by an increased proliferation rate and reduced bone-like nodule formation. Copyright (C) 2007 John Wiley & Sons, Ltd.
Resumo:
Alcohol-sensitive neuronal cell loss, which has been reported in the superior frontal cortex and hippocampus, may underlie the pathogenesis of subsequent cognitive deficits. In the present study, we have used the TUNEL labeling to detect the DNA damage in human alcoholic brains. Seven out of eleven alcoholics exhibited TUNEL-positive cells in both superior frontal cortex and hippocampus, which were co-localized with GFAP immunoreactivity. In contrast, almost no positive cells were detected in the non-alcoholic controls. None of the TUNEL-positive cells showed any typical morphological features of apoptosis or necrosis. TUNEL-positive cells observed in the present study may indicate DNA damage induced by ethanol-related overproduction of reactive oxygen species. (C) 2003 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Occupational exposure to formaldehyde (FA) has been shown to induce nasopharyngeal cancer and has been classified as carcinogenic to humans (group 1) on the basis of sufficient evidence in humans. Tobacco smoke has been associated to a higher risk of development of cancer, especially in the oral cavity, larynx and lungs, as these are places of direct contact with many carcinogenic tobacco’s compounds. Alcohol is a recognized agent that influence cells in a genotoxic form, been citied as a strong agent with potential in the development of carcinogenic lesions. Epidemiological evidence points to a strong synergistic effect between cigarette smoking and alcohol consumption in the induction of cancers in the oral cavity. Approximately 90% of human cancers originate from epithelial cells. Therefore, it could be argued that oral epithelial cells represent a preferred target site for early genotoxic events induced by carcinogenic agents entering the body via inhalation and ingestion. The MN assay in buccal cells was also used to study cancerous and precancerous lesions and to monitor the effects of a number of chemopreventive agents.
Resumo:
Dissertação de Mestrado em Ambiente, Saúde e Segurança.
Resumo:
OBJECTIVE: The aim of this study was to investigate the polymorphism Ile349Val of the enzyme alcohol dehydrogenase ADH1C gene among individuals with alcohol dependence syndrome (ADS) attending Alcoholics Anonymous (AA) meetings. METHODS: A total of 120 subjects residing in Rio de Janeiro city participated in this study. Subjects were divided into two groups: a group consisting of 54 individuals from the ADS group and 66 individuals that declared not having any alcohol dependence (control group). DNA was extracted from mouth epithelial cells by phenol-chloroform method and further submitted to amplification by polymerase chain reaction (PCR). RESULTS: Our results did not show differences between the genotypes of control individuals and ADS subjects. Nevertheless, we found increased rates of alcoholism in families of ADS subjects as compared to controls. CONCLUSIONS: Our results did not show any genotype difference on the ADH1C gene when control and AA genotypes are compared.
Resumo:
The chemotherapeutic drug 5-FU is widely used in the treatment of a range of cancers, but resistance to the drug remains a major clinical problem. Since defects in the mediators of apoptosis may account for chemo-resistance, the identification of new targets involved in 5-FU-induced apoptosis is of main clinical interest. We have identified the ds-RNA-dependent protein kinase (PKR)as a key molecular target of 5-FU involved in apoptosis induction in human colon and breast cancer cell lines. PKR distribution and activation, apoptosis induction and cytotoxic effects were analyzed during 5-FU and 5-FU/IFNalpha treatment in several colon and breast cancer cell lines with different p53 status. PKR protein was activated by 5-FU treatment in a p53-independent manner,inducing phosphorylation of the protein synthesis translation initiation factor eIF-2alpha and cell death by apoptosis. Furthermore, PKR interference promoted a decreased response to 5-FU treatment and those cells were not affected by the synergistic antitumor activity of 5-FU/IFNalpha combination. These results, taken together, provide evidence that PKR is a key molecular target of 5-FU with potential relevance in the clinical use of this drug.
Resumo:
ATM and PARP-1 are two of the most important players in the cell's response to DNA damage. PARP-1 and ATM recognize and bound to both single and double strand DNA breaks in response to different triggers. Here we report that ATM and PARP-1 form a molecular complex in vivo in undamaged cells and this association increases after gamma-irradiation. ATM is also modified by PARP-1 during DNA damage. We have also evaluated the impact of PARP-1 absence or inhibition on ATM-kinase activity and have found that while PARP-1 deficient cells display a defective ATM-kinase activity and reduced gamma-H2AX foci formation in response to gamma-irradiation, PARP inhibition on itself is able to activate ATM-kinase. PARP inhibition induced gamma H2AX foci accumulation, in an ATM-dependent manner. Inhibition of PARP also induces DNA double strand breaks which were dependent on the presence of ATM. As consequence ATM deficient cells display an increased sensitivity to PARP inhibition. In summary our results show that while PARP-1 is needed in the response of ATM to gamma irradiation, the inhibition of PARP induces DNA double strand breaks (which are resolved in and ATM-dependent pathway) and activates ATM kinase.
Resumo:
BACKGROUND: Alcohol consumption leading to morbidity and mortality affects HIV-infected individuals. Here, we aimed to study self-reported alcohol consumption and to determine its association with adherence to antiretroviral therapy (ART) and HIV surrogate markers. METHODS: Cross-sectional data on daily alcohol consumption from August 2005 to August 2007 were analysed and categorized according to the World Health Organization definition (light, moderate or severe health risk). Multivariate logistic regression models and Pearson's chi(2) statistics were used to test the influence of alcohol use on endpoints. RESULTS: Of 6,323 individuals, 52.3% consumed alcohol less than once a week in the past 6 months. Alcohol intake was deemed light in 39.9%, moderate in 5.0% and severe in 2.8%. Higher alcohol consumption was significantly associated with older age, less education, injection drug use, being in a drug maintenance programme, psychiatric treatment, hepatitis C virus coinfection and with a longer time since diagnosis of HIV. Lower alcohol consumption was found in males, non-Caucasians, individuals currently on ART and those with more ART experience. In patients on ART (n=4,519), missed doses and alcohol consumption were positively correlated (P<0.001). Severe alcohol consumers, who were pretreated with ART, were more often off treatment despite having CD4+ T-cell count <200 cells/microl; however, severe alcohol consumption per se did not delay starting ART. In treated individuals, alcohol consumption was not associated with worse HIV surrogate markers. CONCLUSIONS: Higher alcohol consumption in HIV-infected individuals was associated with several psychosocial and demographic factors, non-adherence to ART and, in pretreated individuals, being off treatment despite low CD4+ T-cell counts.
Resumo:
Alcohol (ethanol; EtOH) provides fuel energy to the body (29.7 kJ (7. 1 kcal)/g, 23.4 kJ (5.6 kcal)/ml), as do other macronutrients, but no associated essential nutrients. The thermogenic effect of EtOH (on average 15 % of its metabolizable value) is much greater than that of the main substrates utilized by the body, i.e. fat and carbohydrates (CHO), suggesting a lower net efficiency of energy utilization for EtOH than for fat and CHO. EtOH cannot be stored in the body and is toxic, so that there is an obligatory continuous oxidation of EtOH and it becomes the priority fuel to be metabolized. In contrast to CHO, its rate of oxidation does not depend on the dose ingested. As with CHO intake, it engenders a shift in postprandial substrate utilization (decrease in fat oxidation), but by a non-insulin-mediated mechanism. A limited amount of EtOH can be converted to fatty acids by hepatic de novo lipogenesis (as occurs with high levels of CHO feeding) from acetate production, which inhibits lipolysis in peripheral tissues. There is no evidence that EtOH consumed under normoenergetic conditions (i.e. isoenergetically replacing CHO or fat) leads to greater body fat storage than fat or CHO. However, there is still a lack of experimental studies on the influence of EtOH on the level of spontaneous physical activity in man. This effect may well depend on the dose of EtOH consumed as well as other intrinsic factors.
Resumo:
When massively expressed in bacteria, recombinant proteins often tend to misfold and accumulate as soluble and insoluble nonfunctional aggregates. A general strategy to improve the native folding of recombinant proteins is to increase the cellular concentration of viscous organic compounds, termed osmolytes, or of molecular chaperones that can prevent aggregation and can actively scavenge and convert aggregates into natively refoldable species. In this study, metal affinity purification (immobilized metal ion affinity chromatography [IMAC]), confirmed by resistance to trypsin digestion, was used to distinguish soluble aggregates from soluble nativelike proteins. Salt-induced accumulation of osmolytes during induced protein synthesis significantly improved IMAC yields of folding-recalcitrant proteins. Yet, the highest yields were obtained with cells coexpressing plasmid-encoded molecular chaperones DnaK-DnaJ-GrpE, ClpB, GroEL-GroES, and IbpA/B. Addition of the membrane fluidizer heat shock-inducer benzyl alcohol (BA) to the bacterial medium resulted in similar high yields as with plasmid-mediated chaperone coexpression. Our results suggest that simple BA-mediated induction of endogenous chaperones can substitute for the more demanding approach of chaperone coexpression. Combined strategies of osmolyte-induced native folding with heat-, BA-, or plasmid-induced chaperone coexpression can be thought to optimize yields of natively folded recombinant proteins in bacteria, for research and biotechnological purposes.
Resumo:
Effects of water activity and 1-propanol concentration on synthesis of propyl oleate from oleic acid using Aspergillus niger cell-bound lipases in isooctane are described. A. niger produces lipases (EC 3.1.1.3) which partly bind to the mycelium during growth. Ester production was monitored for 72 hours at different 1-propanol concentrations and water activities. Aliquots were sequentially withdrawn and propyl esters were quantified using GC and methyl palmitate as an internal standard. In all assayed conditions A. niger cell-bound lipases catalysed propyl oleate synthesis, but at different degrees.