841 resultados para AIP


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We discuss the solutions obtained for the gluon propagador in Landau gauge within two distinct approximations for the Schwinger-Dyson equations (SDE). The first, named Mandelstam's approximation, consist in neglecting all contributions that come from fermions and ghosts fields while in the second, the ghosts fields are taken into account leading to a coupled system of integral equations. In both cases we show that a dynamical mass for the gluon propagator can arise as a solution. © 2005 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spinodal decomposition in a model of pure-gauge SU(2) theory that incorporates a deconfinement phase transition is investigated by means of real-time lattice simulations of the fully nonlinear Ginzburg-Landau equation. Results are compared with a Glauber dynamical evolution using Monte Carlo simulations of pure-gauge lattice QCD. © 2005 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An approach for a unified description of the pion electromagnetic form factor in the space- and time-like regions, within a constituent quark model on the light front is briefly illustrated. Three main ingredients enter our approach: i) the on-shell quark-hadron vertex functions in the valence sector, ii) the dressed photon vertex where a photon decays in a quark-antiquark pair, and iii) the emission and absorption amplitudes of a pion by a quark. © 2005 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For light exotic nuclei modeled as two neutrons n and a core A, we report results for the two-neutron correlation functions and also for the mean-square radii, considering a universal scaling function. The results of our calculations for the neutron-neutron correlation functions are qualitatively consistent with recent data obtained for 11Li and 14Be nuclei. The root-mean-square distance in the halo of such nuclei are also consistent with data, which means that the neutrons of the halo have a large probability to be found outside the interaction range. Therefore the low-energy properties of these halo neutrons are, to a large extend, model independent as long as few physical input scales are fixed. The model is restricted to s-wave subsystems, with small energies for the bound or virtual states. For the radii we are also shown results for the 6He and 20C. All the interaction effects, as higher partial wave in the interaction and/or Pauli blocking effect are, to some extend, included in our model, as long as the three-body binding energy is supplied. © 2005 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are point interactions in one dimension that can be interpreted as self-adjoint extensions (SAEs) of the kinetic energy [KE] operator. Here, we report the results obtained in two recent papers cited in [1]. In the first, we consider point interactions in one dimension in the form of the Fermi pseudo-potential, in one and two-channel cases. In the second, we consider a new type of point interactions that are self-adjoint and effectively energy-dependent. © 2005 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

General relativity and quantum mechanics are not consistent with each other. This conflict stems from the very fundamental principles on which these theories are grounded. General relativity, on one hand, is based on the equivalence principle, whose strong version establishes the local equivalence between gravitation and inertia. Quantum mechanics, on the other hand, is fundamentally based on the uncertainty principle, which is essentially nonlocal. This difference precludes the existence of a quantum version of the strong equivalence principle, and consequently of a quantum version of general relativity. Furthermore, there are compelling experimental evidences that a quantum object in the presence of a gravitational field violates the weak equivalence principle. Now it so happens that, in addition to general relativity, gravitation has an alternative, though equivalent, description, given by teleparallel gravity, a gauge theory for the translation group. In this theory torsion, instead of curvature, is assumed to represent the gravitational field. These two descriptions lead to the same classical results, but are conceptually different. In general relativity, curvature geometrizes the interaction while torsion, in teleparallel gravity, acts as a force, similar to the Lorentz force of electrodynamics. Because of this peculiar property, teleparallel gravity describes the gravitational interaction without requiring any of the equivalence principle versions. The replacement of general relativity by teleparallel gravity may, in consequence, lead to a conceptual reconciliation of gravitation with quantum mechanics. © 2006 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We analyze double Higgs boson production at the LHC in the context of Little Higgs models. In double Higgs production, the diagrams involved are directly related to those that cause the cancellation of the quadratic divergence of the Higgs self-energy, so this mode provides a robust prediction for this class of models. We find that in extensions of this model with the inclusion of a so-called T-parity, there is a significant enhancement in the cross sections as compared to the Standard Model. © 2006 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We use an improved Langevin description that incorporates both additive and multiplicative noise terms to study the dynamics of phase ordering. We perform real-time lattice simulations to investigate the role played by different contributions to the dissipation and noise. Lattice-size independence is assured by the use of appropriate lattice counterterms. © 2006 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Effects of lattice-QCD-inspired equations of state and continuous emission on some observables are discussed, by solving a 3D hydrodynamics. The particle multiplicity as well ν 2 are found to increase in the mid-rapidity. We also discuss the effects of the initial-condition fluctuations. © 2006 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Due to its underlying gauge structure, teleparallel gravity achieves a separation between inertial and gravitational effects. It can, in consequence, describe the isolated gravitational interaction without resorting to the equivalence principle, and is able to provide a tensorial definition for the energy-momentum density of the gravitational field. Considering the conceptual conflict between the local equivalence principle and the nonlocal uncertainty principle, the replacement of general relativity by its teleparallel equivalent can be considered an important step towards a prospective reconciliation between gravitation and quantum mechanics. © 2006 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We analyze the surface geometry of the spherical even-even Ca, Ni, Sn and Pb nuclei using two approaches: The relativistic Dirac-Hartree-Bogoliubov one with several parameter sets and the non-relativistic Hartree-Fock-Bogoliubov one with the Gogny force. The proton and neutron density distributions are fitted to two-parameter Fermi density distributions to obtain the half-density radii and diffuseness parameters. Those parameters allow us to determine the nature of the neutron skins predicted by the models. The calculations are compared with existing experimental data. © 2007 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report a renormalized zero-range interaction approach to estimate the size of generic weakly bound three-body systems where two particles are identical. We present results for the neutron-neutron root-mean-square distances of the halo nuclei 6He, 11Li, 14Be and 20C, where the systems are taken as two halo neutrons with an inert point-like core. We also report an approach to obtain the neutron-neutron correlation function in halo nuclei. In this case, our results suggest a review of the corresponding experimental data analysis. © 2007 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present results for spatial distributions of weakly-bound three-body systems, derived from a universal scaling function that depends on the mass ratio of the particles, as well as on the nature of the subsystems. © 2007 American Institute of Physics.