576 resultados para AGLOMERADO GLOBULAR


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The downstream prion-like protein (doppel, or Dpl) is a paralog of the cellular prion protein, PrPC. The two proteins have ≈25% sequence identity, but seem to have distinct physiologic roles. Unlike PrPC, Dpl does not support prion replication; instead, overexpression of Dpl in the brain seems to cause a completely different neurodegenerative disease. We report the solution structure of a fragment of recombinant mouse Dpl (residues 26–157) containing a globular domain with three helices and a small amount of β-structure. Overall, the topology of Dpl is very similar to that of PrPC. Significant differences include a marked kink in one of the helices in Dpl, and a different orientation of the two short β-strands. Although the two proteins most likely arose through duplication of a single ancestral gene, the relationship is now so distant that only the structures retain similarity; the functions have diversified along with the sequence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Arc repressor forms a homodimer in which the subunits intertwine to create a single globular domain. To obtain Arc sequences that fold preferentially as heterodimers, variants with surface patches of excess positive or negative charge were designed. Several but not all oppositely charged sequence pairs showed preferential heterodimer formation. In the most successful design pair, α helix B of one subunit contained glutamic acids at positions 43, 46, 47, 48, and 50, whereas the other subunit contained lysines or arginines at these positions. A continuum electrostatic model captures many features of the experimental results and suggests that the most successful designs include elements of both positive and negative design.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The x-ray structure of a C-terminal fragment of the RAP74 subunit of human transcription factor (TF) IIF has been determined at 1.02-Å resolution. The α/β structure is strikingly similar to the globular domain of linker histone H5 and the DNA-binding domain of hepatocyte nuclear factor 3γ (HNF-3γ), making it a winged-helix protein. The surface electrostatic properties of this compact domain differ significantly from those of bona fide winged-helix transcription factors (HNF-3γ and RFX1) and from the winged-helix domains found within the RAP30 subunit of TFIIF and the β subunit of TFIIE. RAP74 has been shown to interact with the TFIIF-associated C-terminal domain phosphatase FCP1, and a putative phosphatase binding site has been identified within the RAP74 winged-helix domain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The prion protein displays a unique structural ambiguity in that it can adopt multiple stable conformations under physiological conditions. In our view, this puzzling feature resulted from a sudden environmental change in evolution when the prion, previously an integral membrane protein, got expelled into the extracellular space. Analysis of known vertebrate prions unveils a primordial transmembrane protein encrypted in their sequence, underlying this relocalization hypothesis. Apparently, the time elapsed since this event was insufficient to create a “minimally frustrated” sequence in the new milieu, probably due to the functional constraints set by the importance of the very flexibility that was created in the relocalization. This scenario may explain why, in a structural sense, the prion protein is still en route toward becoming a foldable globular protein.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present here the description of genes coding for molluscan hemocyanins. Two distantly related mollusks, Haliotis tuberculata and Octopus dofleini, were studied. The typical architecture of a molluscan hemocyanin subunit, which is a string of seven or eight globular functional units (FUs, designated a to h, about 50 kDa each), is reflected by the gene organization: a series of eight structurally related coding regions in Haliotis, corresponding to FU-a to FU-h, with seven highly variable linker introns of 174 to 3,198 bp length (all in phase 1). In Octopus seven coding regions (FU-a to FU-g) are found, separated by phase 1 introns varying in length from 100 bp to 910 bp. Both genes exhibit typical signal (export) sequences, and in both cases these are interrupted by an additional intron. Each gene also contains an intron between signal peptide and FU-a and in the 3′ untranslated region. Of special relevance for evolutionary considerations are introns interrupting those regions that encode a discrete functional unit. We found that five of the eight FUs in Haliotis each are encoded by a single exon, whereas FU-f, FU-g, and FU-a are encoded by two, three and four exons, respectively. Similarly, in Octopus four of the FUs each correspond to an uninterrupted exon, whereas FU-b, FU-e, and FU-f each contain a single intron. Although the positioning of the introns between FUs is highly conserved in the two mollusks, the introns within FUs show no relationship either in location nor phase. It is proposed that the introns between FUs were generated as the eight-unit polypeptide evolved from a monomeric precursor, and that the internal introns have been added later. A hypothesis for evolution of the ring-like quaternary structure of molluscan hemocyanins is presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Myo-inositol-1-phosphate (I[1]P) synthase (EC 5.5.1.4) catalyzes the reaction from glucose 6-phosphate to I(1)P, the first step of myo-inositol biosynthesis. Among the metabolites of I(1)P is inositol hexakisphosphate, which forms a mixed salt called phytin or phytate, a storage form of phosphate and cations in seeds. We have isolated a rice (Oryza sativa L.) cDNA clone, pRINO1, that is highly homologous to the I(1)P synthase from yeast and plants. Northern analysis of total RNA showed that the transcript accumulated to high levels in embryos but was undetectable in shoots, roots, and flowers. In situ hybridization of developing seeds showed that the transcript first appeared in the apical region of globular-stage embryos 2 d after anthesis (DAA). Strong signals were detected in the scutellum and aleurone layer after 4 DAA. The level of the transcript in these cells increased until 7 DAA, after which time it gradually decreased. Phytin-containing particles called globoids appeared 4 DAA in the scutellum and aleurone layer, coinciding with the localization of the RINO1 transcript. The temporal and spatial patterns of accumulation of the RINO1 transcript and globoids suggest that I(1)P synthase directs phytin biosynthesis in rice seeds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is generally accepted that globular proteins fold with a hydrophobic core and a hydrophilic exterior. Might the spatial distribution of amino acid hydrophobicity exhibit common features? The hydrophobic profile detailing this distribution from the protein interior to exterior has been examined for 30 relatively diverse structures obtained from the Protein Data Bank, for 3 proteins of the 30S ribosomal subunit, and for a simple set of 14 decoys. A second-order hydrophobic moment has provided a simple measure of the spatial variation. Shapes of the calculated spatial profiles of all native structures have been found to be comparable. Consequently, profile shapes as well as particular profile features should assist in validating predicted protein structures and in discriminating between different protein-folding pathways. The spatial profiles of the 14 decoys are clearly distinguished from the profiles of their native structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An overview is presented of the current situation regarding radioactive dating of the matter of which our Galaxy is comprised. A firm lower bound on the age from nuclear chronometers of ≈9–10 Gyr is entirely consistent with age determinations from globular clusters and white dwarf cooling histories. The reasonable assumption of an approximately uniform nucleosynthesis rate yields an age for the Galaxy of 12.8 ± 3 Gyr, which again is consistent with current determinations from other methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To quantitatively investigate the trafficking of the transmembrane lectin VIP36 and its relation to cargo-containing transport carriers (TCs), we analyzed a C-terminal fluorescent-protein (FP) fusion, VIP36-SP-FP. When expressed at moderate levels, VIP36-SP-FP localized to the endoplasmic reticulum, Golgi apparatus, and intermediate transport structures, and colocalized with epitope-tagged VIP36. Temperature shift and pharmacological experiments indicated VIP36-SP-FP recycled in the early secretory pathway, exhibiting trafficking representative of a class of transmembrane cargo receptors, including the closely related lectin ERGIC53. VIP36-SP-FP trafficking structures comprised tubules and globular elements, which translocated in a saltatory manner. Simultaneous visualization of anterograde secretory cargo and VIP36-SP-FP indicated that the globular structures were pre-Golgi carriers, and that VIP36-SP-FP segregated from cargo within the Golgi and was not included in post-Golgi TCs. Organelle-specific bleach experiments directly measured the exchange of VIP36-SP-FP between the Golgi and endoplasmic reticulum (ER). Fitting a two-compartment model to the recovery data predicted first order rate constants of 1.22 ± 0.44%/min for ER → Golgi, and 7.68 ± 1.94%/min for Golgi → ER transport, revealing a half-time of 113 ± 70 min for leaving the ER and 1.67 ± 0.45 min for leaving the Golgi, and accounting for the measured steady-state distribution of VIP36-SP-FP (13% Golgi/87% ER). Perturbing transport with AlF4− treatment altered VIP36-SP-GFP distribution and changed the rate constants. The parameters of the model suggest that relatively small differences in the first order rate constants, perhaps manifested in subtle differences in the tendency to enter distinct TCs, result in large differences in the steady-state localization of secretory components.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structural maintenance of chromosomes (SMC) protein encoded by the fission yeast rad18 gene is involved in several DNA repair processes and has an essential function in DNA replication and mitotic control. It has a heterodimeric partner SMC protein, Spr18, with which it forms the core of a multiprotein complex. We have now isolated the human orthologues of rad18 and spr18 and designated them hSMC6 and hSMC5. Both proteins are about 1100 amino acids in length and are 27–28% identical to their fission yeast orthologues, with much greater identity within their N- and C-terminal globular domains. The hSMC6 and hSMC5 proteins interact to form a tight complex analogous to the yeast Rad18/Spr18 heterodimer. In proliferating human cells the proteins are bound to both chromatin and the nucleoskeleton. In addition, we have detected a phosphorylated form of hSMC6 that localizes to interchromatin granule clusters. Both the total level of hSMC6 and its phosphorylated form remain constant through the cell cycle. Both hSMC5 and hSMC6 proteins are expressed at extremely high levels in the testis and associate with the sex chromosomes in the late stages of meiotic prophase, suggesting a possible role for these proteins in meiosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To test whether the structure of a protein is determined in a manner akin to the assembly of a jigsaw puzzle, up to 10 adjacent residues within the core of T4 lysozyme were replaced by methionine. Such variants are active and fold cooperatively with progressively reduced stability. The structure of a seven-methionine variant has been shown, crystallographically, to be similar to wild type and to maintain a well ordered core. The interaction between the core residues is, therefore, not strictly comparable with the precise spatial complementarity of the pieces of a jigsaw puzzle. Rather, a certain amount of give and take in forming the core structure is permitted. A simplified hydrophobic core sequence, imposed without genetic selection or computer-based design, is sufficient to retain native properties in a globular protein.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Constant pressure and temperature molecular dynamics techniques have been employed to investigate the changes in structure and volumes of two globular proteins, superoxide dismutase and lysozyme, under pressure. Compression (the relative changes in the proteins' volumes), computed with the Voronoi technique, is closely related with the so-called protein intrinsic compressibility, estimated by sound velocity measurements. In particular, compression computed with Voronoi volumes predicts, in agreement with experimental estimates, a negative bound water contribution to the apparent protein compression. While the use of van der Waals and molecular volumes underestimates the intrinsic compressibilities of proteins, Voronoi volumes produce results closer to experimental estimates. Remarkably, for two globular proteins of very different secondary structures, we compute identical (within statistical error) protein intrinsic compressions, as predicted by recent experimental studies. Changes in the protein interatomic distances under compression are also investigated. It is found that, on average, short distances compress less than longer ones. This nonuniform contraction underlines the peculiar nature of the structural changes due to pressure in contrast with temperature effects, which instead produce spatially uniform changes in proteins. The structural effects observed in the simulations at high pressure can explain protein compressibility measurements carried out by fluorimetric and hole burning techniques. Finally, the calculation of the proteins static structure factor shows significant shifts in the peaks at short wavenumber as pressure changes. These effects might provide an alternative way to obtain information concerning compressibilities of selected protein regions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human deoxyribonuclease I (DNase I), an enzyme recently approved for treatment of cystic fibrosis (CF), has been engineered to create two classes of mutants: actin-resistant variants, which still catalyze DNA hydrolysis but are no longer inhibited by globular actin (G-actin) and active site variants, which no longer catalyze DNA hydrolysis but still bind G-actin. Actin-resistant variants with the least affinity for actin, as measured by an actin binding ELISA and actin inhibition of [33P] DNA hydrolysis, resulted from the introduction of charged, aliphatic, or aromatic residues at Ala-114 or charged residues on the central hydrophobic actin binding interface at Tyr-65 or Val-67. In CF sputum, the actin-resistant variants D53R, Y65A, Y65R, or V67K were 10-to 50-fold more potent than wild type in reducing viscoelasticity as determined in sputum compaction assays. The reduced viscoelasticity correlated with reduced DNA length as measured by pulsed-field gel electrophoresis. In contrast, the active site variants H252A or H134A had no effect on altering either viscoelasticity or DNA length in CF sputum. The data from both the active site and actin-resistant variants demonstrate that the reduction of viscoelasticity by DNase I results from DNA hydrolysis and not from depolymerization of filamentous actin (F-actin). The increased potency of the actin-resistant variants indicates that G-actin is a significant inhibitor of DNase I in CF sputum. These results further suggest that actin-resistant DNase I variants may have improved efficacy in CF patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We previously reported that KIF3A and KIF3B form a heterodimer that functions as a microtubule-based fast anterograde translocator of membranous organelles. We have also shown that this KIF3A/3B forms a complex with other associated polypeptides, named kinesin superfamily-associated protein 3 (KAP3). In the present study, we purified KAP3 protein by immunoprecipitation using anti-KIF3B antibody from mouse testis. Microsequencing was carried out, and we cloned the full-length KAP3 cDNA from a mouse brain cDNA library. Two isoforms of KAP3 exist [KAP3A (793 aa) and KAP3B (772 aa)], generated by alternative splicing in the carboxyl terminus region. Their amino acid sequences have no homology with those of any other known proteins, and prediction of their secondary structure indicated that almost the entire KAP3 molecule is alpha-helical. We produced recombinant KAP3 and KIF3A/3B using a baculovirus-Sf9 expression system. A reconstruction study in Sf9 cells revealed that KAP3 is a globular protein that binds to the tail domain of KIF3A/3B. The immunolocalization pattern of KAP3 was similar to that of KIF3A/3B in nerve cells. In addition, we found that KAP3 does not affect the motor activity of KIF3A/3B. KAP3 was associated with a membrane-bound form of KIF3A/3B in a fractional immunoprecipitation experiment, and since the KIF3 complex was found to bind to membranous organelles in an EM study, KAP3 may regulate membrane binding of the KIF3 complex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The inwardly rectifying K+ channel ROMK1 has been implicated as being significant in K+ secretion in the distal nephron. ROMK1 has been shown by immunocytochemistry to be expressed in relevant nephron segments. The development of the atomic force microscope has made possible the production of high resolution images of small particles, including a variety of biological macromolecules. Recently, a fusion protein of glutathione S-transferase (GST) and ROMK1 (ROMK1-GST) has been used to produce a polyclonal antibody for immunolocalization of ROMK1. We have used atomic force microscopy to examine ROMK1-GST and the native ROMK1 polypeptide cleaved from GST. Imaging was conducted with the proteins in physiological solutions attached to mica. ROMK1-GST appears in images as a particle composed of two units of similar size. Analyses of images indicate that the two units have volumes of approximately 118 nm3, which is close to the theoretical volume of a globular protein of approximately 65 kDa (the molecular mass of ROMK1-GST). Native GST exists as a dimer, and the images obtained here are consistent with the ROMK1-GST fusion protein's existence as a heterodimer. In experiments on ROMK1 in aqueous solution, single molecules appear to aggregate, but contact to the mica was maintained. Addition of ATP to the solution produced a change in height of the aggregates. This change (which was reversible) suggests that ATP induces a structural change in the ROMK1 protein. The data show that atomic force microscopy is a useful tool for examination of purified protein molecules under near-physiological conditions, and furthermore, that structural alterations in the proteins may be continuously investigated.