876 resultados para ADAPTIVE NEURAL NETWORKS
Resumo:
Ancillary services represent a good business opportunity that must be considered by market players. This paper presents a new methodology for ancillary services market dispatch. The method considers the bids submitted to the market and includes a market clearing mechanism based on deterministic optimization. An Artificial Neural Network is used for day-ahead prediction of Regulation Down, regulation-up, Spin Reserve and Non-Spin Reserve requirements. Two test cases based on California Independent System Operator data concerning dispatch of Regulation Down, Regulation Up, Spin Reserve and Non-Spin Reserve services are included in this paper to illustrate the application of the proposed method: (1) dispatch considering simple bids; (2) dispatch considering complex bids.
Resumo:
It is important to understand and forecast a typical or a particularly household daily consumption in order to design and size suitable renewable energy systems and energy storage. In this research for Short Term Load Forecasting (STLF) it has been used Artificial Neural Networks (ANN) and, despite the consumption unpredictability, it has been shown the possibility to forecast the electricity consumption of a household with certainty. The ANNs are recognized to be a potential methodology for modeling hourly and daily energy consumption and load forecasting. Input variables such as apartment area, numbers of occupants, electrical appliance consumption and Boolean inputs as hourly meter system were considered. Furthermore, the investigation carried out aims to define an ANN architecture and a training algorithm in order to achieve a robust model to be used in forecasting energy consumption in a typical household. It was observed that a feed-forward ANN and the Levenberg-Marquardt algorithm provided a good performance. For this research it was used a database with consumption records, logged in 93 real households, in Lisbon, Portugal, between February 2000 and July 2001, including both weekdays and weekend. The results show that the ANN approach provides a reliable model for forecasting household electric energy consumption and load profile. © 2014 The Author.
Resumo:
In this paper, a novel hybrid approach is proposed for electricity prices forecasting in a competitive market, considering a time horizon of 1 week. The proposed approach is based on the combination of particle swarm optimization and adaptive-network based fuzzy inference system. Results from a case study based on the electricity market of mainland Spain are presented. A thorough comparison is carried out, taking into account the results of previous publications, to demonstrate its effectiveness regarding forecasting accuracy and computation time. Finally, conclusions are duly drawn.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologiea da Universidade Nova de Lisboa, para obtenção do Grau de Mestre em Engenharia Biomédica
Resumo:
This article aims to apply the concepts associated with artificial neural networks (ANN) in the control of an autonomous robot system that is intended to be used in competitions of robots. The robot was tested in several arbitrary paths in order to verify its effectiveness. The results show that the robot performed the tasks with success. Moreover, in the case of arbitrary paths the ANN control outperforms other methodologies, such as fuzzy logic control (FLC).
Resumo:
Neste documento descreve-se o projeto desenvolvido na unidade curricular de Tese e Dissertação durante o 2º ano do Mestrado de Engenharia Eletrotécnica e de Computadores no ramo de Automação e Sistemas, no Departamento de Engenharia Eletrotécnica (DEE) do Instituto Superior de Engenharia do Porto (ISEP). O projeto escolhido teve como base o uso da tecnologia das redes neuronais para implementação em sistemas de controlo. Foi necessário primeiro realizar um estudo desta tecnologia, perceber como esta surgiu e como é estruturada. Por último, abordar alguns casos de estudo onde as redes neuronais foram aplicadas com sucesso. Relativamente à implementação, foram consideradas diferentes estruturas de controlo, e entre estas escolhidas a do sistema de controlo estabilizador e sistema de referência adaptativo. No entanto, como o objetivo deste trabalho é o estudo de desempenho quando aplicadas as redes neuronais, não se utilizam apenas estas como controlador. A análise exposta neste trabalho trata de perceber em que medida é que a introdução das redes neuronais melhora o controlo de um processo. Assim sendo, os sistemas de controlo utilizados devem conter pelo menos uma rede neuronal e um controlador PID. Os testes de desempenho são aplicados no controlo de um motor DC, sendo realizados através do recurso ao software MATLAB. As simulações efetuadas têm diferentes configurações de modo a tirar conclusões o mais gerais possível. Assim, os sistemas de controlo são simulados para dois tipos de entrada diferentes, e com ou sem a adição de ruído no sensor. Por fim, é efetuada uma análise das respostas de cada sistema implementado e calculados os índices de desempenho das mesmas.
Resumo:
A personalização é um aspeto chave de uma interação homem-computador efetiva. Numa era em que existe uma abundância de informação e tantas pessoas a interagir com ela, de muitas maneiras, a capacidade de se ajustar aos seus utilizadores é crucial para qualquer sistema moderno. A criação de sistemas adaptáveis é um domínio bastante complexo que necessita de métodos muito específicos para ter sucesso. No entanto, nos dias de hoje ainda não existe um modelo ou arquitetura padrão para usar nos sistemas adaptativos modernos. A principal motivação desta tese é a proposta de uma arquitetura para modelação do utilizador que seja capaz de incorporar diferentes módulos necessários para criar um sistema com inteligência escalável com técnicas de modelação. Os módulos cooperam de forma a analisar os utilizadores e caracterizar o seu comportamento, usando essa informação para fornecer uma experiência de sistema customizada que irá aumentar não só a usabilidade do sistema mas também a produtividade e conhecimento do utilizador. A arquitetura proposta é constituída por três componentes: uma unidade de informação do utilizador, uma estrutura matemática capaz de classificar os utilizadores e a técnica a usar quando se adapta o conteúdo. A unidade de informação do utilizador é responsável por conhecer os vários tipos de indivíduos que podem usar o sistema, por capturar cada detalhe de interações relevantes entre si e os seus utilizadores e também contém a base de dados que guarda essa informação. A estrutura matemática é o classificador de utilizadores, e tem como tarefa a sua análise e classificação num de três perfis: iniciado, intermédio ou avançado. Tanto as redes de Bayes como as neuronais são utilizadas, e uma explicação de como as preparar e treinar para lidar com a informação do utilizador é apresentada. Com o perfil do utilizador definido torna-se necessária uma técnica para adaptar o conteúdo do sistema. Nesta proposta, uma abordagem de iniciativa mista é apresentada tendo como base a liberdade de tanto o utilizador como o sistema controlarem a comunicação entre si. A arquitetura proposta foi desenvolvida como parte integrante do projeto ADSyS - um sistema de escalonamento dinâmico - utilizado para resolver problemas de escalonamento sujeitos a eventos dinâmicos. Possui uma complexidade elevada mesmo para utilizadores frequentes, daí a necessidade de adaptar o seu conteúdo de forma a aumentar a sua usabilidade. Com o objetivo de avaliar as contribuições deste trabalho, um estudo computacional acerca do reconhecimento dos utilizadores foi desenvolvido, tendo por base duas sessões de avaliação de usabilidade com grupos de utilizadores distintos. Foi possível concluir acerca dos benefícios na utilização de técnicas de modelação do utilizador com a arquitetura proposta.
Resumo:
Schizophrenia stands for a long-lasting state of mental uncertainty that may bring to an end the relation among behavior, thought, and emotion; that is, it may lead to unreliable perception, not suitable actions and feelings, and a sense of mental fragmentation. Indeed, its diagnosis is done over a large period of time; continuos signs of the disturbance persist for at least 6 (six) months. Once detected, the psychiatrist diagnosis is made through the clinical interview and a series of psychic tests, addressed mainly to avoid the diagnosis of other mental states or diseases. Undeniably, the main problem with identifying schizophrenia is the difficulty to distinguish its symptoms from those associated to different untidiness or roles. Therefore, this work will focus on the development of a diagnostic support system, in terms of its knowledge representation and reasoning procedures, based on a blended of Logic Programming and Artificial Neural Networks approaches to computing, taking advantage of a novel approach to knowledge representation and reasoning, which aims to solve the problems associated in the handling (i.e., to stand for and reason) of defective information.
Resumo:
Thrombotic disorders have severe consequences for the patients and for the society in general, being one of the main causes of death. These facts reveal that it is extremely important to be preventive; being aware of how probable is to have that kind of syndrome. Indeed, this work will focus on the development of a decision support system that will cater for an individual risk evaluation with respect to the surge of thrombotic complaints. The Knowledge Representation and Reasoning procedures used will be based on an extension to the Logic Programming language, allowing the handling of incomplete and/or default data. The computational framework in place will be centered on Artificial Neural Networks.
Resumo:
The females of the two species of the Lutzomyia intermedia complex can be easily distinguished, but the males of each species are quite similar. The ratios between the extra-genital and the genital structures of L. neivai are larger than those of L. intermedia s. s., according to ANOVA. An artificial neural network was trained with a set of 300 examples, randomly taken from a sample of 358 individuals. The input vectors consisted of several ratios between some structures of each insect. The model was tested on the remaining 58 insects, 56 of which (96.6%) were correctly identified. This ratio of success can be considered remarkable if one takes into account the difficulty of attaining comparable results using traditional statistical techniques.
Resumo:
This paper presents general problems and approaches for the spatial data analysis using machine learning algorithms. Machine learning is a very powerful approach to adaptive data analysis, modelling and visualisation. The key feature of the machine learning algorithms is that they learn from empirical data and can be used in cases when the modelled environmental phenomena are hidden, nonlinear, noisy and highly variable in space and in time. Most of the machines learning algorithms are universal and adaptive modelling tools developed to solve basic problems of learning from data: classification/pattern recognition, regression/mapping and probability density modelling. In the present report some of the widely used machine learning algorithms, namely artificial neural networks (ANN) of different architectures and Support Vector Machines (SVM), are adapted to the problems of the analysis and modelling of geo-spatial data. Machine learning algorithms have an important advantage over traditional models of spatial statistics when problems are considered in a high dimensional geo-feature spaces, when the dimension of space exceeds 5. Such features are usually generated, for example, from digital elevation models, remote sensing images, etc. An important extension of models concerns considering of real space constrains like geomorphology, networks, and other natural structures. Recent developments in semi-supervised learning can improve modelling of environmental phenomena taking into account on geo-manifolds. An important part of the study deals with the analysis of relevant variables and models' inputs. This problem is approached by using different feature selection/feature extraction nonlinear tools. To demonstrate the application of machine learning algorithms several interesting case studies are considered: digital soil mapping using SVM, automatic mapping of soil and water system pollution using ANN; natural hazards risk analysis (avalanches, landslides), assessments of renewable resources (wind fields) with SVM and ANN models, etc. The dimensionality of spaces considered varies from 2 to more than 30. Figures 1, 2, 3 demonstrate some results of the studies and their outputs. Finally, the results of environmental mapping are discussed and compared with traditional models of geostatistics.
Resumo:
BACKGROUND The study of the attentional system remains a challenge for current neuroscience. The "Attention Network Test" (ANT) was designed to study simultaneously three different attentional networks (alerting, orienting, and executive) based in subtraction of different experimental conditions. However, some studies recommend caution with these calculations due to the interactions between the attentional networks. In particular, it is highly relevant that several interpretations about attentional impairment have arisen from these calculations in diverse pathologies. Event related potentials (ERPs) and neural source analysis can be applied to disentangle the relationships between these attentional networks not specifically shown by behavioral measures. RESULTS This study shows that there is a basic level of alerting (tonic alerting) in the no cue (NC) condition, represented by a slow negative trend in the ERP trace prior to the onset of the target stimuli. A progressive increase in the CNV amplitude related to the amount of information provided by the cue conditions is also shown. Neural source analysis reveals specific modulations of the CNV related to a task-related expectancy presented in the NC condition; a late modulation triggered by the central cue (CC) condition and probably representing a generic motor preparation; and an early and late modulation for spatial cue (SC) condition suggesting specific motor and sensory preactivation. Finally, the first component in the information processing of the target stimuli modulated by the interaction between orienting network and the executive system can be represented by N1. CONCLUSIONS The ANT is useful as a paradigm to study specific attentional mechanisms and their interactions. However, calculation of network effects is based in subtractions with non-comparable experimental conditions, as evidenced by the present data, which can induce misinterpretations in the study of the attentional capacity in human subjects.
Resumo:
I use a multi-layer feedforward perceptron, with backpropagation learning implemented via stochastic gradient descent, to extrapolate the volatility smile of Euribor derivatives over low-strikes by training the network on parametric prices.
Resumo:
The objective of this paper is to compare the performance of twopredictive radiological models, logistic regression (LR) and neural network (NN), with five different resampling methods. One hundred and sixty-seven patients with proven calvarial lesions as the only known disease were enrolled. Clinical and CT data were used for LR and NN models. Both models were developed with cross validation, leave-one-out and three different bootstrap algorithms. The final results of each model were compared with error rate and the area under receiver operating characteristic curves (Az). The neural network obtained statistically higher Az than LR with cross validation. The remaining resampling validation methods did not reveal statistically significant differences between LR and NN rules. The neural network classifier performs better than the one based on logistic regression. This advantage is well detected by three-fold cross-validation, but remains unnoticed when leave-one-out or bootstrap algorithms are used.
Resumo:
In recent years there has been an explosive growth in the development of adaptive and data driven methods. One of the efficient and data-driven approaches is based on statistical learning theory (Vapnik 1998). The theory is based on Structural Risk Minimisation (SRM) principle and has a solid statistical background. When applying SRM we are trying not only to reduce training error ? to fit the available data with a model, but also to reduce the complexity of the model and to reduce generalisation error. Many nonlinear learning procedures recently developed in neural networks and statistics can be understood and interpreted in terms of the structural risk minimisation inductive principle. A recent methodology based on SRM is called Support Vector Machines (SVM). At present SLT is still under intensive development and SVM find new areas of application (www.kernel-machines.org). SVM develop robust and non linear data models with excellent generalisation abilities that is very important both for monitoring and forecasting. SVM are extremely good when input space is high dimensional and training data set i not big enough to develop corresponding nonlinear model. Moreover, SVM use only support vectors to derive decision boundaries. It opens a way to sampling optimization, estimation of noise in data, quantification of data redundancy etc. Presentation of SVM for spatially distributed data is given in (Kanevski and Maignan 2004).