488 resultados para A. Dislocations


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Frustrated systems, typically characterized by competing interactions that cannot all be simultaneously satisfied, are ubiquitous in nature and display many rich phenomena and novel physics. Artificial spin ices (ASIs), arrays of lithographically patterned Ising-like single-domain magnetic nanostructures, are highly tunable systems that have proven to be a novel method for studying the effects of frustration and associated properties. The strength and nature of the frustrated interactions between individual magnets are readily tuned by design and the exact microstate of the system can be determined by a variety of characterization techniques. Recently, thermal activation of ASI systems has been demonstrated, introducing the spontaneous reversal of individual magnets and allowing for new explorations of novel phase transitions and phenomena using these systems. In this work, we introduce a new, robust material with favorable magnetic properties for studying thermally active ASI and use it to investigate a variety of ASI geometries. We reproduce previously reported perfect ground-state ordering in the square geometry and present studies of the kagome lattice showing the highest yet degree of ordering observed in this fully frustrated system. We consider theoretical predictions of long-range order in ASI and use both our experimental studies and kinetic Monte Carlo simulations to evaluate these predictions. Next, we introduce controlled topological defects into our square ASI samples and observe a new, extended frustration effect of the system. When we introduce a dislocation into the lattice, we still see large domains of ground-state order, but, in every sample, a domain wall containing higher energy spin arrangements originates from the dislocation, resolving a discontinuity in the ground-state order parameter. Locally, the magnets are unfrustrated, but frustration of the lattice persists due to its topology. We demonstrate the first direct imaging of spin configurations resulting from topological frustration in any system and make predictions on how dislocations could affect properties in numerous materials systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: Individuals with generalized joint hypermobility (GJH) are reported, in the clinical setting, to be at greater risk of developing musculoskeletal related joint pain, joint dislocations and tendinopathies. It is hypothesized that impaired static and dynamic neuromuscular movement control in those with GJH is responsible for contributing to an increased risk of injury and subsequent knee osteoarthritis (OA). Yet, to date, it remains unproven if there is an association between GJH and knee OA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ability to grow ultrathin films layer-by-layer with well-defined epitaxial relationships has allowed research groups worldwide to grow a range of artificial films and superlattices, first for semiconductors, and now with oxides. In the oxides thin film research community, there have been concerted efforts recently to develop a number of epitaxial oxide systems grown on single crystal oxide substrates that display a wide variety of novel interfacial functionality, such as enhanced ferromagnetic ordering, increased charge carrier density, increased optical absorption, etc, at interfaces. The magnitude of these novel properties is dependent upon the structure of thin films, especially interface sharpness, intermixing, defects, and strain, layering sequence in the case of superlattices and the density of interfaces relative to the film thicknesses. To understand the relationship between the interfacial thin film oxide atomic structure and its properties, atomic scale characterization is required. Transmission electron microscopy (TEM) offers the ability to study interfaces of films at high resolution. Scanning transmission electron microscopy (STEM) allows for real space imaging of materials with directly interpretable atomic number contrast. Electron energy loss spectroscopy (EELS), together with STEM, can probe the local chemical composition as well as local electronic states of transition metals and oxygen. Both techniques have been significantly improved by aberration correctors, which reduce the probe size to 1 Å, or less. Aberration correctors have thus made it possible to resolve individual atomic columns, and possibly probe the electronic structure at atomic scales. Separately, using electron probe forming lenses, structural information such as the crystal structure, strain, lattice mismatches, and superlattice ordering can be measured by nanoarea electron diffraction (NED). The combination of STEM, EELS, and NED techniques allows us to gain a fundamental understanding of the properties of oxide superlattices and ultrathin films and their relationship with the corresponding atomic and electronic structure. In this dissertation, I use the aforementioned electron microscopy techniques to investigate several oxide superlattice and ultrathin film systems. The major findings are summarized below. These results were obtained with stringent specimen preparation methods that I developed for high resolution studies, which are described in Chapter 2. The essential materials background and description of electron microscopy techniques are given in Chapter 1 and 2. In a LaMnO3-SrMnO3 superlattice, we demonstrate the interface of LaMnO3-SrMnO3 is sharper than the SrMnO3-LaMnO3 interface. Extra spectral weights in EELS are confined to the sharp interface, whereas at the rougher interface, the extra states are either not present or are not confined to the interface. Both the structural and electronic asymmetries correspond to asymmetric magnetic ordering at low temperature. In a short period LaMnO3-SrTiO3 superlattice for optical applications, we discovered a modified band structure in SrTiO3 ultrathin films relative to thick films and a SrTiO3 substrate, due to charge leakage from LaMnO3 in SrTiO3. This was measured by chemical shifts of the Ti L and O K edges using atomic scale EELS. The interfacial sharpness of LaAlO3 films grown on SrTiO3 was investigated by the STEM/EELS technique together with electron diffraction. This interface, when prepared under specific conditions, is conductive with high carrier mobility. Several suggestions for the conductive interface have been proposed, including a polar catastrophe model, where a large built-in electric field in LaAlO3 films results in electron charge transfer into the SrTiO3 substrate. Other suggested possibilities include oxygen vacancies at the interface and/or oxygen vacancies in the substrate. The abruptness of the interface as well as extent of intermixing has not been thoroughly investigated at high resolution, even though this can strongly influence the electrical transport properties. We found clear evidence for cation intermixing through the LaAlO3-SrTiO3 interface with high spatial resolution EELS and STEM, which contributes to the conduction at the interface. We also found structural defects, such as misfit dislocations, which leads to increased intermixing over coherent interfaces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chopart (midtarsal) joint dislocations are relatively rare but potentially serious injuries. Their low prevalence and the possible absence of evident radiological findings cannot justify misdiagnosis because an adequate and correct treatment is required to achieve a proper clinical outcome. A midtarsal joint dislocation in a 19-year-old-woman is described, in which diagnosis was performed at 8 weeks of evolution. An open reduction was performed by a double approach (medial and lateral) and a Kirschner wire joint stabilization. At one-year of follow-up, loss of reduction was not observed and the patient was pain-free, although she referred to functional limitation when running. Besides describing the treatment of this particular injury, this study is aimed at increasing the level of clinical suspicion in order to avoid misdiagnosis such as occurred in our case.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transmission electron microscopy and spatially resolved electron energy-loss spectroscopy have been applied to investigate the indium distribution and the interface morphology in axial (In,Ga)N/GaN nanowire heterostructures. The ordered axial (In,Ga)N/GaN nanowire heterostructures with an indium concentration up to 80% are grown by molecular beam epitaxy on GaN-buffered Si(111) substrates. We observed a pronounced lattice pulling effect in all the nanowire samples given in a broad transition region at the interface. The lattice pulling effect becomes smaller and the (In,Ga)N/GaN interface width is reduced as the indium concentration is increased in the (In,Ga)N section. The result can be interpreted in terms of the increased plastic strain relaxation via the generation of the misfit dislocations at the interface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thesis (Ph.D, Community Health & Epidemiology) -- Queen's University, 2016-10-03 22:59:05.858

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Projeto de Graduaão apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Licenciado em Fisioterapia

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introducción y objetivos: Las enfermedades autoinmunes en cuidado intensivo están relacionadas con tasas de mortalidad elevadas. El propósito del presente estudio fue buscar factores asociados a mortalidad en estos pacientes. Materiales y métodos: estudio observacional de casos incidentes, retrospectivo, en base a revisión de historias clínicas de los pacientes que ingresaron a la unidad de cuidado intensivo del Hospital Universitario de la Samaritana; se recolecto un total de 68 eventos con los que se evaluó la relación de las variables estudiadas con mortalidad. Resultados: Las enfermedades autoinmunes se presentan más frecuentemente en mujeres (66%), el lupus eritematoso sistémico fue la afección reumatológica más común (36%), el promedio de edad fue de 46 aos, la media de días en ventilación mecánica fue de 10 (desviación estándar 13 días), el valor del APACHE promedio fue de 19 puntos, el sistema orgánico más afectado fue el renal (58,5%) y la mortalidad global fue de 40%. Se encontró asociación estadísticamente significativa con cinco variables: presencia de shock al ingreso a UCI OR: 7,368 (IC95% 1,886-28,794); nivel de procalcitonina mayor a 10 OR: 5,231 (IC95% 1,724-15,869); complemento C3 consumido OR: 4,014 (IC95% 1,223-13,173); serositis en la radiografía de tórax OR: 3,771 (IC95% 1,238-11,492); recuento de plaquetas menor a 100.000 OR: 3,33 (IC95%: 1,037-10,714). Conclusión: Existen factores que pueden estar asociados con mortalidad en pacientes con enfermedades autoinmunes en cuidado intensivo, su detección temprana y manejo oportuno podría mejorar el pronóstico de estos pacientes.