970 resultados para 860[82].07[Pueyrredón]


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The variolitic andesite from the Susong County in the Dabie Mountains implies that it was erupted in water. The mineralogy of the varioles is primarily radiate plagioclase (albite sind oligoclase), with little pyroxene, hornblende and quartz (derived from alteration). The pyroxene, hornblende and quartz are in the interstices between plagiocalse. The matrix consists of glass, hornblende, chlorite, epidote and zoisite. It is clearly subjected an extensive alteration. The andesite has an uncommon chemical composition. The SiO2 content is about 56.8%, TiO2 = 0.9%, MgO = 6.4%, Fe2O3 (tot) = 6.7%similar to 7.6%, 100Mg/(Mg + Fe) = 64.1 similar to 66.2. Mg-# is significantly high. The andesite has high abundances of large-lithophile trace elements (e.g. K, Ba. Sr, LREE), e.g. La/Nb = 5.56 similar to 6.07, low abundances of high-strength-field elements (HFSE e.g. Ta, Nb, P, Ti), particularly Ta and Nb strongly depleted. These are consistent with the characteristics of subduction-related magmas. In the spider diagram of trace elements, from Ce to right hand, the abundances of elements decrease quickly, showing a character of the continental margins. There has a strong punishment of light-rare-earth elements, with a significant diffraction of REEs (the mean value of (La/Yb)(N) is 32.84). No Eu anomaly, but there are anomaly high (La/Yb)(N) = 28.63 similar to 36.74, (La/Y)(N) = 70.33 similar to 82.4. The elements Y and Yb are depleted greatly, Y<20 g/g, Y-N = 2.74 similar to 2.84, Yb-N = 2.18 similar to 2.35. From the La-(La/Sm) diagram, the andesite is derived from partial melting. But the epsilone value of Nd is - 18.7 similar to -19.2, so that the material source may be the mantle materials affected by the crustal materials. The Nd model age is 1.9 Ga indicating that the variolitic basaltic andesite was resulted from the mantle wedge of North China block, which had the Nd model age of 2.5Ga, when the Yangze block which had the Nd model age of 1.7Ga subducted beneath it. So the variolitic andesite has characteristics of the island-are volconic rocks oil a continental basement in the vicinity of the destructive continental margin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

能量代谢指动物在进行生理活动(如摄食、消化以及动物的活动等)时所消耗能量的总和,一般以动物的呼吸率利排泄率来估计动物的能量代谢。其主要研究内容是闸明生物能量代谢的基木规律以及与环境闪子的关系。菲律宾蛤仔(Ruditapesphil ippmarum)是我国一种重要的养殖贝类,关于其能量代谢的研究却较少,这种状况妨碍了菲律宾蛤仔养殖生态理论的完善和养殖技术的提高。本研究主要对菲律宾蛤仔呼吸率和排泄率的基本规律(能量代谢与体重的关系、能量代谢的昼夜变化)及其与环境因子(饵料浓度、水温、栖息底质环境)的关系进行探讨。研究结果如下:1.不同体重菲律宾蛤仔代谢率小同。实验川菲律宾蛤仔分三种大小:l(干肉重为0.07-0.14g)、ll(干肉重0.27-0.34g)、III(干肉重0.45~0.63g)。温度包括:26℃(八月)、20℃(十月)、1 5℃(十二月)、9℃(一月)。实验共设四个饵料浓度:2.28±0.25,6.454±0.44,10.284±0.82,15.414±1.56mgTPM/L(TPM,总颗粒物),饵料中POM(颗粒有机物)含量都为4.68±1.64 mg/L。常温下菲律宾蛤仔代谢率随着体重的增大而增大。15℃、20~C、26℃时蛤仔呼吸率与干肉重呈明显的幂函数关系R=aW~b,a值变动范围为0.1076-0.3309;b值变动范围为0.239l~0.8381;蛤仔排泄率与干肉重也呈明显的幂函数关系N=aW~b,a值变动范围为14.213~68.362:b值变动范围为0.3673-1.1 532。9℃(饵料浓度为2.28±0.25mgTPM/L)、20℃(饵料浓度为10.284-0.82mgTPM/L)、26℃(饵料浓度为6.454±0.44mgTPM/L)时不同体重蛤仔氧氮比差异显著,其它情况下不同体重蛤仔氧氮比差异不显著。2.常温下菲律宾蛤仔代谢率受饵料浓度的影响,不同大小蛤仔受饵料浓度的影响程度不同。I组蛤仔呼吸率受饵料浓度的显著影响,II组III组蛤仔呼吸率只在9℃(一月)和26~C(八月)时受饵料浓度的显著影响。26℃时影响最显著,26℃时I组蛤仔在饵料浓度为2.28±0.25,6.45±0.44,l0.28±0.82,15.4l±1.56mgTPM/L时呼吸率分别是O.086,0.146,0.073,0.093(mlO_2/h);ll组蛤仔在上述浓度饵料中呼吸率分别是0.138,0.214,0.J 26,0.12l(mlO_2/h);III组蛤仔在上述浓度饵料中呼吸率分别是0.129,0.266,0.186,0.192(mlO_2/h)。菲律宾蛤仔呼吸率在饵料浓度为6.45±0.44 mgTPM/L时最高,蛤仔呼吸率在其它饵料浓度时都会降低。菲律宾蛤仔排泄率在饵料浓度为10.28±0.82 mgTPM/L和15.4l士1.56mgTPM/L时显著高于其它浓度组,9℃时这种趋势更明显,9℃时饵料浓度为2.28±0.25,6.454±044,lO.284±0.82,15.41±1.56mgTPM/L中I组蛤仔排泄率分别是4.297,2.874,8.003,6.658(μgNH_3-N/h);II组蛤仔在上述浓度饵料中排泄率分别是4.011,3.609,10.427,12.732(μgNH_3-N/h);III组蛤仔在上述浓度饵料中排泄率分别是2.28 l,6.452,10.283,15.417(μgNH_3-N/h)。3.菲律宾蛤仔代谢率受自然温度的显著影Ⅱ向。I组蛤仔在9℃、15℃、20℃、26℃时呼吸率平均为0.057,0.085,0.039,O.099;II组蛤仔在上述四个温度中呼吸率平均为0.08,O.128,0.089,0.149(mlO_2/h),I组和II组蛤仔在9℃和20~C时呼吸率较低,在26℃时呼吸率最高。III组蛤仔在上述四个温度中呼吸率平均为0.09,O.1 59,O.143,O.193(mlO_2/h),在9℃时llI组蛤仔呼吸率显著低于其它温度组。温度为9℃、15℃、20℃、26℃时l组蛤仔排泄率平均为5.458,13.169,4.946,11.138(μgNH_3-N/h):II组蛤仔在上述温度中排泄率平均为7.695,23.578,8.319,23.90l(μgNH_3-N/h);III组蛤仔在上述温度中排泄率平均为11.738,27.443,15.658,35.407(μgNH_3-N/h),蛤仔排泄率在15℃和26℃时均高于9℃和20℃。4.摄食状态与饥饿状态菲律宾蛤仔代谢率有明显不同。26℃时蛤仔静止状态呼吸率平均为0.336(m102/g干重.h),摄食状态呼吸率平均为0.656(ml0_2干重.h),摄食状态呼吸率比静止状态平均升高了0 32(ml0_2/g干重.h);26℃时蛤仔静止状态排泄率平均为39.471(μgNH_3-N/g干重.h),摄食状态排泄率平均为88.08(μgNH_3-N/g干重.h),摄食状态排泄率比静止状态排泄率平均升高了48.6(μgNH_3-N/g干重.h)。摄食状态代谢率平均是静止状态的2~3倍。根据摄食引起的呼吸率和排泄率升高量得出每氧化产生lμgNH_3-N需0_2量平均为7.05μl。5.人工控制温度对菲律宾蛤仔代谢率有明显影响。不同大小蛤仔受温度的影响程度不同。在温度5℃、10℃、l 5℃、20℃、26℃,I组和II组蛤仔呼吸率都随着温度的升高而升高,在10℃~l5℃和20℃~26℃这二个温度变化范围内呼吸率变化最大,在20℃~26℃时I组蛤仔呼吸率变动范围为O.85~1.04(m10_2/g干重.h)、II组蛤仔变动范围为0.57~0.86(ml0_2/g干重.h)。III组蛤仔呼吸率只在5℃~l0℃时明显增高,变动范围为0.09~0.5l(m10_2/g干重.h),在10℃~26℃范围内变化不大。I组和II组蛤仔排泄率随着温度的升高而升高,变动幅度较大,在5℃~26℃范围内其排泄率变动范围为10.32~81.53(μgNH_3-N/g干重.h);而 III组蛤仔排泄率只在5℃~15℃时随着温度的升高而升高,其排泄率变动范围为6.75~23.77(μgNH_3-N/g干重.h),在15℃~26℃范围内几乎不变。III组蛤仔的适温范围比I组和II组蛤仔广。菲律宾蛤仔在5℃和10℃时氧氮比变化明显,变动范围为2.76~11.44,在15~26℃时变化不大。6.菲律宾蛤仔代谢率有明显的日节律性,呈正弦曲线型变化。蛤仔夜问代谢率明显升高。I组蛤仔夜间呼吸率平均为0.867(m10_2/g干重.h),白天呼吸率平均为O.504(m10_2/g干重.h);II组蛤仔夜间呼吸率平均为0.438(m10_2/g干重.h),白天呼吸率平均为0.36l(m102/g干重.h);III组蛤仔夜间呼吸率平均为0.409(m10_2/g干重.h),白天呼吸率平均为0.252(m102/g干重.h)。在22:00-23:00菲律宾蛤仔呼吸率最高。7.底质环境对菲律宾蛤仔的代谢率有明显影响。在饥饿状态下菲律宾蛤仔在泥沙底质中呼吸率平均为l 406(m10_2/g干重h),在无泥沙环境中呼吸率平均为O.963(ml0_2/g干重.h);摄食状态下菲律宾蛤仔在泥沙底质中呼吸率平均为1.59l(m102/g干重.h),在无泥沙环境中呼吸率平均为1.115(m10_2/g干重.h)。在饥饿状态下菲律宾蛤仔在泥沙底质中排泄率平均为78.934(μgNH_3-N/g 干重.h),在无泥沙环境巾排泄率平均为45.043(μgNH_3-N/g干重.h);摄食状态下菲律宾蛤仔在泥沙底质中排泄率平均为87.12l(μgNH_3-N/g干重.h),在无泥沙底质中排泄率平均为58.354(μgNH_3-N/g干重.h)。蛤仔在泥沙环境中呼吸率和排泄率都明显升高。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

本研究是在青海省达日县青珍乡进行的,分析了高山嵩苹草句不同退化演替阶段覆被变化与植物群落特征、多样性关系。研究结果表明:轻度退化草地、中度退化草地、重度退化草地物种数分别占研究区物种数的58.93%、73.2l%、66、07%。原生植被的优势种高山嵩草随退化程度的加剧而逐渐减少,其优势度分别为27.13%、12.37%、1.82%。物种多样性指数依次为中度退化演替阶段(3.41)〉重度退化演替阶段(3.39)〉轻度退化演替阶段(2.99);均匀度指数依次为重度退化演替阶段(O.94)〉中度退化演替阶段(0.92)〉轻度退化演替阶段(0.86)。地上生物量中度退化草地最大,轻度退化草地居中,重度退化草地最低。随着退化程度的加剧。禾草类和莎草类植物的生物量减少,而杂类草增加。轻度退化草地地下生物量明显高于退化草地。相关分析表明。植被盖度与土壤含水量之间呈极显著的正相关关系(P〈0.01)。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper selected the Taklamakan Desert and the Badain Jaran Desert as the research areas, tested the carbonate content of surface-sand samples of dunes using Eijkelkamp carbonate goniophotometer, and analyzed the spatial-distribution characteristics of carbonate and estimated the carbonate-stock and secondary carbonate-stock in 1m depth of surface sand in the Taklamakan Desert and the Badain Jaran Desert. In addition, the paper test XRD, SEM, TDA, stable carbon isotope and radioactive strontium isotope of lacustrine deposits in the Taklamakan Desert and carbonates, such as kunkar, root canal, lacustrine deposits, sinter and calcrete, in the Badain Jaran Desert. Resting on the achievements by our predecessors, it analyzed the mineral-composition differences of the carbonates, calculated the contents of secondary carbonate and, furthermore, evaluated their potential of sequestration of CO2 in the atmosphere. The overall goal of this study was to increase our understanding of soil carbonate in the context of carbon sequestration in the arid region in China. That is, to advance our understanding about whether or not secondary carbonate in desert is a sink for atmospheric CO2. The following viewpoints were obtained: 1 Carbonate contents of surface-sand samples decend from the south to the north of the Taklamakan Desert. The minimum lies in the south and the maxmum in the mid. Carbonate content of surface-sand of megadunes in the Badain Jaran Desert has low value generally in the dune-crest and the base of slope, and large value in the mid. The average of Carbonate contents of all sorts of collected samples in the same area of the Taklamakan Desert has small diffetences. The average is about 9%. 2 Using carbonate contents as key parameters, calculate the carbon-stock of carbonates in 1m depth of surface sand in the Taklamakan Desert and the Badain Jaran Deser.They are 1.13Pg and 0.19 Pg respectively. There are 0.53Pg and 0.088Pg carbon-stock of secondary-carbonates in 1m depth of surface sand in the Taklamakan Desert and the Badain Jaran Desert. 3 Through testing data from XRD (X-ray diffraction)and TAD ( Thermal Analysis Data), the most significant conclusion derived from is that the main mineral ingredient is calcite in different carbonate substances in arid regions, From the SEM(Scanning electron microscopy ) images, can obtains the information about the micro environment of different carbonate forms in which they can grow. 4 Selected gas by termal cracking and traditional phosphoric acid method, their δ13C show that δ13C is a good parameter to indicate the micro environment in which different secondary carbonate forms. From the δ13C of the same type samples, if the redeposit degree is hard, theδ13C is light, the redeposit degree is weak, the δ13C is heave. and the δ13C of the different type samples, δ13C is mainly controlled by the micro environment in which secondary formed. if the procedure is characterized by redeposit and dissolve of marine facies carbonate, δ13C is heavy, it is characterized by CO2 which produced by plant respiration,δ13C is light. 5 From the δ13C of lacustrine deposit in the different grain size, there exsit certain differences in their micro environment and secondary degree among different grain size in the same grade. 6 The secondary carbonate content of lacustrine deposits in Taklimakan Desert is 47.26%. And those of root canal, sinter, calcrete, kunkar, lacustrine deposit and surface sand in Badain Jaran Desert are 91.74%, 78.46%, 76.26%, 87.87%, 85.37%and 46.49%, respectively. Of different grain size samples, the secondary carbonate contents of coarse fraction (20-63μm), sub-coarse fraction (5-20μm) and fine fraction (<5μm) are 80.10%, 47.2%and 50.07%, respectively. 7 There is no obvious relevance betweenδ13C of secondary carbonate and the content of secondary carbonate,theδ13C of secondary carbonate mainly reflects the parameters of secondary process, the content of secondary carbonate reflects difference of secondary degree.. 8 Silicates potentially supply 3.4 pencent calcium source during forming process of lacustrine deposits in Taklimakan Desert. If calcium source is mainly supplied by goundwater, it can be calculated that about 5.18 %, 6.13%, 5.68%, 5.64 % and 6.82% silicates supply calcium source respectively for root canal, kunkar, lacustrine deposit, calcrete and sinter, during the forming process of different kinds of carbonates in Badain Jaran Desert.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As powerful tools to study the lithosphere dynamics, the effective elastic thickness (Te) as well as the envelope of yielding stress of lithosphere have been attracted great attention of geoscientists in the past thirty years. The oceanic lithosphere, contrary to the continental lithosphere, has more fruits for its simple structures and evolution process. In continent, the lithosphere commonly is complex and variable in the rheological, thermal structures, and has a complicated history. Therefore, the application of the effective elastic thickness in continent is still a subject to learn in a long time. Te, with the definition of the thickness of an elastic plate in theory flexured by the equal benging of the real stress in the lithosphere plate (Turcotte, 1982), marks the depth of transition between elastic and fluid behaviors of rocks subjected to stress exceeding 100 MPa over the geological timescales (McNutt, 1990). There are three methods often adapted: admittance or isostatic response function, coherence and forwarding. In principle, the models of Te consist of thermal-rheological, non-linear Maxwell, non-linear work hardening and rheological layered models. There is a tentative knowledge of Te that it is affected by the following factors: crustal thickness, crust-mantle decoupling, plate bending, boundary conditions of plate (end forces and bending moments), stress state, sedimentary layer, faulting effect, variation in the mountain belts' strike, foreland basin, inheritance of tectonic evolution, convection of mantle, seismic depth and lithosphere strength. In this thesis, the author introduces the geological sketch of the Dabie collisional orogenic belt and the Hefei Basin. The Dabie Mts. is famous for the ultra-high pressure metamorphism. The crustal materials subducted down to the depth of at least 100 km and exhumed. So that the front subjects arise such as the deeply subduction of continent, and the post-collisional crust-mantle interaction. In a geological journey at June of 1999, the author found the rarely variolitic basaltic andesite in the Dabie Mts. It occurs in Susong Group, near Zhifenghe Countryside, Susong County, Anhui Province. It is just to the south of the boundary between the high-grade Susong melange and the ultra-high grade South Dabie melange. It has a noticeable knobby or pitted appearance in the surface. The size of the varioles is about 1-4 mm. In hand-specimen and under microscope, there are distinct contacts between the varioles and the matrice. The mineralogy of the varioles is primarily radiate plagioclase, with little pyroxene, hornblende and quartz. The pyroxene, hornblende and quartz are in the interstices between plagioclase. The matrix is consisted of glass, and micro-crystals of chlorite, epidote and zoisite. It is clearly subjected and extensive alteration. The andesite has an uncommon chemical composition. The SiO_2 content is about 56.8%, TiO_2 = 0.9%, MgO = 6.4%, (Fe_2O_3)_(Total) = 6.7% ~ 7.6%, 100 Mg/(Mg+Fe) = 64.1 ~ 66.2. Mg# is significantly high. The andesite has higher abundances of large-lithophile trace elements (e.g. K, Ba, Sr, LREE), e.g. La/Nd = 5.56-6.07, low abundances of high-strength-field elements (HFSE, e.g. Ta, Nb, P, Ti), particularly Ta and Nb strongly depleted. These are consistent with the characteristics of subducted-related magmas (Pearcce, 1982; Sun and McDonaugh, 1989). In the spider diagram of trace elements, from Ce to right hand, the abundances of elements decrease quickly, showing a characteristic of the continental margins (Pearce, 1982). There has a strongly enrichment of light-rare-earth elements, with a significant diffraction of REEs (the mean value of (La/Yb)_N is 32.84). No Eu anomaly, but there are anomaly high (La/Yb)_N = 28.63-36.74, (La/Y)_N = 70.33 - 82.84. The elements Y and Yb depleted greatly, Y < 20 ppm, Y_N = 2.74-2.84, Yb_N = 2.18 - 2.35. From the La-(La/Sm) diagram, the andesite is derived from partial melting. But the epsilone value of Nd is -18.7 ~ -19.2, so that the material source may be the mantle materials affected by the crustal materials. The Nd model age is 1.9 Ga indicating that the basaltic andesite was resulted from the post-collisional crust-mantle interaction between the subducted Yangze carton and the mantle of Sino-Korea carton. To obtain the Te of the lithosphere beneath the Dabie Mts. and the Hefei Basin, the author applies the coherence method in this thesis. The author makes two topography-gravity profiles (profiles 7~(th) and 9~(th)) across the Dabie Mts. and the Hefei Basin, and calculates the auto-coherence, across coherence, power spectrum, across power spectrum of the topography and gravity of the two profiles. From the relationships between the coherence and the wave-number of profiles. From the relationships between the coherence and the wave-number of profiles 7~(th) and 9~(th), it is obtained that the characteristic wavelengths respectively are 157 km and 126 km. Consequently the values of effective elastic thickness are 6.5 km and 4.8 km, respectively. However, the Te values merely are the minimum value of the lithosphere because the coherencemethod in a relative small region will generate a systemic underestimation. Why there is a so low Te value? In order to check the strength of the lithosphere beneath the Dabie Mts., the authore tries to outline the yielding-stress envelope of the lithosphere. It is suggested that the elastic layers in the crust and upper mantle are 18 km and 35 km, respectively. Since there exist a low viscosity layer about 3-5 km thickness, so it is reasonable that the decoupling between the crust and mantle occurred. So the effective thickness of the lithosphere can be estimated from the two elastic layers. Te is about 34 km. This is the maximum strength of the lithosphere. We can make an approximately estimation about the strength of the lithosphere beneath the Dabie Mts.: Te is about 20-30 km. The author believes that the following factors should be responsible for the low Te value: (1) the Dabie Mts. has elevated strongly since K_3-J_1. The north part of the Dabie Mts. elevates faster than the south part today; (2) there occur large active striking faults in this area. And in the east, the huge Tan-Lu striking fault anyway tends to decrease the lithosphere strength; (3) the lithosphere beneath the Dabie Mts. is heter-homogeneous in spatio-temporal; (4) the study area just locates in the adjacent region between the eastern China where the lithosphere thickness is significantly reduced and the normal western China. These factors will decrease the lithosphere strength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

老挝南部Champasak省东北部Boloven高原玄武岩喷发于晚中生代.新生代,在长期热带季风型气候和热带季雨林植被条件下,高原玄武岩上已经发育砖红壤型风化壳。在一条风化壳剖面上采集了11件样品并在室内细碎到200目,使用X射线荧光光谱仪分析了11个样品中的主量元素含量,使用ICP-Ms分析了11件样品REE含量。结果表明,玄武岩风化壳中主量元素Na2O和MgO淋失量最大,K2O和CaO淋失量次之,并在淋失一定程度后淋失速度减慢;样品LR157和LR158中TiO2,P2O5分别为6.07%,1.45%和8.43%,0.82%,为整个剖面中的最高值;CaO的含量是松散风化产物中的最高值。风化玄武岩(LR140,LR141)的∑REE较低,为57.8×10^-6和87.9×10^-6;随着玄武岩风化程度和成壤作用的加强,∑REE逐渐富集,并在风化壳表土下(LR157,LR158)达到最高值1003×10^-6和775×10^-6。风化壳中LREE/HREE值为3.59~14.9,稀土元素分布型式属轻稀土富集型。随着风化程度加深,ce由弱负异常逐渐变为强正异常,而Eu由弱正异常逐渐变小并呈现出强负异常,整个剖面中ce正负异常和Eu正负异常的变化幅度较大。REE在剖面中的分布与含TiO2,P2O5的矿物有明显的相关关系,并且在TiO2,P2O5含量最高的样品LR157和LR158中最为富集。REE富集和Ce正异常出现在pH值为5.23~6.12的酸性和Fe^2+/Fe^3+为0.007~0.13的氧化环境下,证明在酸性氧化环境也能出现REE富集.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Métodos culturais; Adubação e calagem; Cultivares de milho para o Brasil; Secagem e Armazenamento; Comercialização.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

David Johnson, Colin D. Campbell, John A. Lee, Terry V. Callaghan and Dylan Gwynn-Jones (2002). Arctic microorganisms respond more to elevated UV-B radiation than CO2. Nature, 416 (6876) pp.82-83 Sponsorship: NERC / EU / Swedish Academy of Sciences RAE2008

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Em Portugal, os Resíduos Industriais Perigosos carecem de um tratamento especial adequado, com recurso a tecnologias efi cazes do ponto de vista ambiental, económico e social. Cada vez mais, necessitamos de controlar correctamente estes resíduos, para que deles não resultem, directa ou indirectamente, impactes negativos signifi cativos, que se traduzam em prejuízos incontroláveis e irreversíveis para o nosso país. Existem várias estratégias colocadas como hipótese de análise e resolução do problema relativo aos Resíduos Industriais Perigosos. Entre as várias formas de tratamento dos mesmos, este artigo visa salientar e comparar duas delas, a incineração e a co-incineração, pelo facto de existirem estudos minuciosos, permitindo por isso, ponderar estas duas estratégias como melhores alternativas ao problema.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

30 hojas : ilustraciones, fotografías a color, mapa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Handwritten letter from Timothy Merritt to Rev. Epaphras "Kibbe[sic]" regarding religious developments in Boston as well as the death of Merritt's son. Dated 10/07/1803