980 resultados para 532 Fluid mechanics Liquid mechanics
Resumo:
In the usual supersymmetric quantum mechanics, the supercharges change the eigenfunction from the bosonic to fermionic sector and conversely. The classical correspondent of this transformation is shown to be the addition of a total time derivative of a purely imaginary function to the Lagrangian function of the system.
Resumo:
Monte Carlo simulations of liquid formamide, N-methylformamide (MF), and N, N-dimethytformamide (DMF) have been performed in the isothermal and isobaric ensemble at 298 K and 1 atm, aiming to investigate the C-H ⋯ O and N-H ⋯ O hydrogen bonds. The interaction energy was calculated using the classical 6-12 Lennard-Jones pairwise potential plus a Coulomb term on a rigid six-site molecular model with the potential parameters being optimized in this work. Theoretical values obtained for heat of vaporization and liquid densities are in good agreement with the experimental data. The radial distribution function [RDF, g(r)] obtained compare well with R-X diffraction data available. The RDF and molecular mechanics (MM2) minimization show that the C-H ⋯ O interaction has a significant role in the structure of the three liquids. These results are supported by ab initio calculations. This interaction is particularly important in the structure of MF. The intensity of the N - H ⋯ O hydrogen bond is greater in the MF than formamide. This could explain some anomalous properties verified in MF. © 1997 John Wiley & Sons, Inc.
Resumo:
The formalism of supersymmetric quantum mechanics supplies a trial wave function to be used in the variational method. The screened Coulomb potential is analyzed within this approach. Numerical and exact results for energy eigenvalues are compared.
Resumo:
There still controversy about the relation between changes in myocardial contractile function and global left ventricular (LV) performance during stable concentric hypertrophy. To clarify this, we analyzed LV function in vivo and myocardial mechanics in vitro in rats with pressure overload-induced cardiac hypertrophy. Male Wistar rats (70 g) underwent ascending aorta stenosis for 8 weeks (group AAS, n=9). LV performance was assessed by transthoracic echocardiography under light anesthesia. Myocardial function was studied in isolated papillary muscle preparation during isometric contraction. The data were compared with age- and sex-matched sham-operated rats (group C, n=9). LV weight-to-body weight ratio (C: 2.0 ± 0.5 mg/g; AAS: 3.3 ± 0.7 mg/g), LV relative wall thickness (C: 0.19 ± 0.02; AAS; 0.34 ± 0.10), and LV fractional shortening (C: 54 ± 5%; AAS: 70 ± 8%) were increased in the group AAS (p<0.05). Echocardiographic analysis also indicated a significant association (r=0.74; p<0.001) between percent fractional shortening and LV relative wall thickness. The performance of AAS isolated muscle revealed that active tension (C: 6.6 ± 1.7 g/mm 2; AAS: 6.5 ± 1.5 g/mm 2) and maximum rate of tension development (C: 69 ± 21 g/mm 2/s; AAS: 69 ± 18 g/mm 2) were not significantly different from group C (p>0.05). In conclusion: 1) Compensated pressure-overload myocardial hypertrophy is associated with preserved myocardial function and increased ventricular performance; 2) The improved LV function might be due to the ventricular remodeling characterized by an increased relative wall thickness. Copyright © 2002 By PJD Publications Limited.
Resumo:
The energy states of the confined harmonic oscillator and the Hulthén potentials are evaluated using the Variational Method associated to Supersymmetric Quantum Mechanics.
Resumo:
The most general quantum mechanical wave equation for a massive scalar particle in a metric generated by a spherically symmetric mass distribution is considered within the framework of higher derivative gravity (HDG). The exact effective Hamiltonian is constructed and the significance of the various terms is discussed using the linearized version of the above-mentioned theory. Not only does this analysis shed new light on the long standing problem of quantum gravity concerning the exact nature of the coupling between a massive scalar field and the background geometry, it also greatly improves our understanding of the role of HDG's coupling parameters in semiclassical calculations.
Resumo:
Monte Carlo simulations have been performed to investigate the structure and hydrogen bonds formation in liquid acetaldehyde. An all atom model for the acetaldehyde have been optimized in the present work. Theoretical values obtained for heat of vaporisation and density of the liquid are in good agreement with experimental data. Graphics of radial distribution function indicate a well structured liquid compared to other similar dipolar organic liquids. Molecular mechanics minimization in gas phase leads to a trimer of very stable structure. The geometry of this complex is in very good agreement with the rdf. The shortest site-site correlation is between oxygen and the carbonyl hydrogen, suggesting that this correlation play a important role in the liquid structure and properties. The O⋯H average distance and the C-H⋯O angle obtained are characteristic of weak hydrogen bonds.
Resumo:
It is commonly assumed that the equivalence principle can coexist without conflict with quantum mechanics. We shall argue here that, contrary to popular belief, this principle does not hold in quantum mechanics. We illustrate this point by computing the second-order correction for the scattering of a massive scalar boson by a weak gravitational field, treated as an external field. The resulting cross-section turns out to be mass-dependent. A way out of this dilemma would be, perhaps, to consider gravitation without the equivalence principle. At first sight, this seems to be a too much drastic attitude toward general relativity. Fortunately, the teleparallel version of general relativity - a description of the gravitational interaction by a force similar to the Lorentz force of electromagnetism and that, of course, dispenses with the equivalence principle - is equivalent to general relativity, thus providing a consistent theory for gravitation in the absence of the aforementioned principle. © World Scientific Publishing Company.
Resumo:
Tooth transpositions present at a relatively low incidence in the world population and primarily affect maxillary canines and premolars. Treatment of this disturbance should take into account aspects such as facial pattern, age, malocclusion, tooth-size discrepancy, stage of eruption, and magnitude of the transposition. Mechanics for correction should be entirely individualized, reducing the risks and adverse effects. Practitioners often select simpler options, indicating extraction of permanent teeth, which is an irreversible procedure that may bring about damages to the patient. This study presents a case report and treatment of unilateral transposition of maxillary canine and premolar with repositioning of affected teeth to their respective normal positions. © 2006 by The EH Angle Education and Research Foundation, Inc.
Resumo:
In the last decades there was a great development in the study of control systems to attenuate the harmful effect of natural events in great structures, as buildings and bridges. Magnetorheological fluid (MR), that is an intelligent material, has been considered in many proposals of project for these controllers. This work presents the controller design using feedback of states through LMI (Linear Matrix Inequalities) approach. The experimental test were carried out in a structure with two degrees of freedom with a connected shock absorber MR. Experimental tests were realized in order to specify the features of this semi-active controller. In this case, there exist states that are not measurable, so the feedback of the states involves the project of an estimator. The coupling of the MR damper causes a variation in dynamics properties, so an identification methods, based on experimental input/output signal was used to compare with the numerical application. The identification method of Prediction Error Methods - (PEM) was used to find the physical characteristics of the system through realization in modal space of states. This proposal allows the project of a semi-active control, where the main characteristic is the possibility of the variation of the damping coefficient.
Resumo:
As far as external gravitational fields described by Newton's theory are concerned, theory shows that there is an unavoidable conflict between the universality of free fall (Galileo's equivalence principle) and quantum mechanics - a result confirmed by experiment. Is this conflict due perhaps to the use of Newton's gravity, instead of general relativity, in the analysis of the external gravitational field? The response is negative. To show this we compute the low corrections to the cross-section for the scattering of different quantum particles by an external gravitational field, treated as an external field, in the framework of Einstein's linearized gravity. To first order the cross-sections are spin-dependent; if the calculations are pushed to the next order they become dependent upon energy as well. Therefore, the Galileo's equivalence and, consequently, the classical equivalence principle, is violated in both cases. We address these issues here.
Resumo:
This paper is concerned with an overview of upwinding schemes, and further nonlinear applications of a recently introduced high resolution upwind differencing scheme, namely the ADBQUICKEST [V.G. Ferreira, F.A. Kurokawa, R.A.B. Queiroz, M.K. Kaibara, C.M. Oishi, J.A.Cuminato, A.F. Castelo, M.F. Tomé, S. McKee, assessment of a high-order finite difference upwind scheme for the simulation of convection-diffusion problems, International Journal for Numerical Methods in Fluids 60 (2009) 1-26]. The ADBQUICKEST scheme is a new TVD version of the QUICKEST [B.P. Leonard, A stable and accurate convective modeling procedure based on quadratic upstream interpolation, Computer Methods in Applied Mechanics and Engineering 19 (1979) 59-98] for solving nonlinear balance laws. The scheme is based on the concept of NV and TVD formalisms and satisfies a convective boundedness criterion. The accuracy of the scheme is compared with other popularly used convective upwinding schemes (see, for example, Roe (1985) [19], Van Leer (1974) [18] and Arora & Roe (1997) [17]) for solving nonlinear conservation laws (for example, Buckley-Leverett, shallow water and Euler equations). The ADBQUICKEST scheme is then used to solve six types of fluid flow problems of increasing complexity: namely, 2D aerosol filtration by fibrous filters; axisymmetric flow in a tubular membrane; 2D two-phase flow in a fluidized bed; 2D compressible Orszag-Tang MHD vortex; axisymmetric jet onto a flat surface at low Reynolds number and full 3D incompressible flows involving moving free surfaces. The numerical simulations indicate that this convective upwinding scheme is a good generic alternative for solving complex fluid dynamics problems. © 2012.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciências da Motricidade - IBRC
Resumo:
OBJECTIVES: Despite the recent success regarding the transplantation of tissue-engineered airways, the mechanical properties of these grafts are not well understood. Mechanical assessment of a tissue-engineered airway graft before implantation may be used in the future as a predictor of function. The aim of this preliminary work was to develop a noninvasive image-processing environment for the assessment of airway mechanics.METHOD: Decellularized, recellularized and normal tracheas (groups DECEL, RECEL, and CONTROL, respectively) immersed in Krebs-Henseleit solution were ventilated by a small-animal ventilator connected to a Fleisch pneumotachograph and two pressure transducers (differential and gauge). A camera connected to a stereomicroscope captured images of the pulsation of the trachea before instillation of saline solution and after instillation of Krebs-Henseleit solution, followed by instillation with Krebs-Henseleit with methacholine 0.1 M (protocols A, K and KMCh, respectively). The data were post-processed with computer software and statistical comparisons between groups and protocols were performed.RESULTS: There were statistically significant variations in the image measurements of the medial region of the trachea between the groups (two-way analysis of variance [ANOVA], p<0.01) and of the proximal region between the groups and protocols (two-way ANOVA, p<0.01).CONCLUSIONS: The technique developed in this study is an innovative method for performing a mechanical assessment of engineered tracheal grafts that will enable evaluation of the viscoelastic properties of neo-tracheas prior to transplantation.