953 resultados para 20-hydroxyeicosatetraenoic Acid
Resumo:
This study aimed to evaluate if the splenectomy alters the biodistribution of 99mTc-DMSA and renal function in Wistar rats. The animals were separated in the groups: splenectomy (n = 6) and control (n = 6). After splenectomy (15 days), the administration of 0.1ml of 99mTc-DMSA IV (0.48 MBq) was carried out. Thirty minutes later, kidney, heart, lung, thyroid, stomach, bladder and femur and samples of blood were isolated. The organs were weighed, counted and the percentage of radioactivity -g (%ATI-g) determined. Serum urea and creatinine, hematocrit, leukocytes and platelets were measured. Statistics by t test (p<0.05) was done. There was a significant reduction in %ATI-g in kidney and blood (p<0.05) of splenectomized animals, a significant increase (p<0.05) of urea (88.8 ± 18.6 mg-dL) and creatinine (0.56 ± 0.08 mg-dL), compared to the controls (51.5±1.6, 0.37±0.02mg-dL, respectively), as well as increase in platelets and leucocytes, and hematocrit reduction. The analysis of the results indicates that in rats, splenectomy seems to alter the renal function and the uptake of 99mTc-DMSA
Resumo:
Docosahexaenoic (DHA) and arachidonic acids (AA) are polyunsaturated fatty acids (PUFAs), major components of brain tissue and neural systems, and the precursors of a number of biologically active metabolites with functions in inflammation resolution, neuroprotection and other actions. As PUFAs are highly susceptible to peroxidation, we hypothesised whether cigarette smokers would present altered PUFAs levels in plasma and erythrocyte phospholipids. Adult males from Indian, Sri-Lankan or Bangladeshi genetic backgrounds who reported smoking between 20 and 60 cigarettes per week were recruited. The control group consisted of matched non-smokers. A blood sample was taken, plasma and erythrocyte total lipids were extracted, phospholipids were separated by thin layer chromatography, and the fatty acid content analysed by gas chromatography. In smokers, dihomo-gamma-linolenic acid, the AA precursor, was significantly reduced in plasma and erythrocyte phosphatidylcholine. AA and DHA were significantly reduced in erythrocyte sphingomyelin. Relatively short term smoking has affected the fatty acid composition of plasma and erythrocyte phospholipids with functions in neural tissue composition, cell signalling, cell growth, intracellular trafficking, neuroprotection and inflammation, in a relatively young population. As lipid peroxidation is pivotal in the pathogenesis of atherosclerosis and neurodegenerative diseases such as Alzheimer disease, early effects of smoking may be relevant for the development of such conditions.
Resumo:
This study aimed to evaluate if the splenectomy alters the biodistribution of 99mTc-DMSA and renal function in Wistar rats. The animals were separated in the groups: splenectomy (n = 6) and control (n = 6). After splenectomy (15 days), the administration of 0.1ml of 99mTc-DMSA IV (0.48 MBq) was carried out. Thirty minutes later, kidney, heart, lung, thyroid, stomach, bladder and femur and samples of blood were isolated. The organs were weighed, counted and the percentage of radioactivity -g (%ATI-g) determined. Serum urea and creatinine, hematocrit, leukocytes and platelets were measured. Statistics by t test (p<0.05) was done. There was a significant reduction in %ATI-g in kidney and blood (p<0.05) of splenectomized animals, a significant increase (p<0.05) of urea (88.8 ± 18.6 mg-dL) and creatinine (0.56 ± 0.08 mg-dL), compared to the controls (51.5±1.6, 0.37±0.02mg-dL, respectively), as well as increase in platelets and leucocytes, and hematocrit reduction. The analysis of the results indicates that in rats, splenectomy seems to alter the renal function and the uptake of 99mTc-DMSA
Resumo:
Sewage sludge applied to soils as a fertilizer often contains metals and linear alkylbenzene sulphonate (LAS) as contaminants. These pollutants can be transported to the aquatic environment where they can alter the phosphatase activity in living organisms. The acid phosphatase of algae plays important roles in metabolism such as decomposing organic phosphate into free phosphate and autophagic digestive processes. The order of in vitro inhi- bition of Pseudokirchneriella subcapitata acid phosphatase at the highest concentration tested was LAS[Hg2? = Al 3?[Se4? = Pb2?[Cd2?. A non-competitive inhibi- tion mechanism was obtained for Hg2? (Ki = 0.040 mM) and a competitive inhibition for LAS (Ki = 0.007 mM). In vivo studies with treated algae cultures showed that the inhibition of specific activity was observed in algae exposed during 7 days, in contrast to short term (24 h) treatments with both these chemicals. Our results suggest that the inhibition parameters in vitro did not markedly differ between the two chemicals. On the other hand, in vivo evaluations showed strong differences between both pollu- tants regarding the concentration values and the degree of response.
Resumo:
A better method for determination of shikimate in plant tissues is needed to monitor exposure of plants to the herbicide glyphosate [N-(phosphonomethyl)glycine] and to screen the plant kingdom for high levels of this valuable phytochemical precursor to the pharmaceutical oseltamivir. A simple, rapid, and efficient method using microwave-assisted extraction (MWAE) with water as the extraction solvent was developed for the determination of shikimic acid in plant tissues. High performance liquid chromatography was used for the separation of shikimic acid, and chromatographic data were acquired using photodiode array detection. This MWAE technique was successful in recovering shikimic acid from a series of fortified plant tissues at more than 90% efficiency with an interference-free chromatogram. This allowed the use of lower amounts of reagents and organic solvents, reducing the use of toxic and/or hazardous chemicals, as compared to currently used methodologies. The method was used to determine the level of endogenous shikimic acid in several species of Brachiaria and sugarcane (Saccharum officinarum) and on B. decumbens and soybean (Glycine max) after treatment with glyphosate. The method was sensitive, rapid and reliable in all cases.
Resumo:
The objective was to evaluate amino acid composition of silages produced from three raw materials. Commercial marine fish waste, commercial freshwater fish waste, and tilapia filleting residue were used to produce fish silage by acid digestion (20 ml/kg formic acid and 20 ml/kg sulfuric acid) and anaerobic fermentation (50 g/kg Lactobacillus plantarum, 150 g/kg sugar cane molasses). Protein content and amino acid composition were determined for raw materials and silage. Marine fish waste had higher crude protein content (776.7 g/kg) compared to freshwater fish waste (496.2 g/kg) and tilapia filleting residue (429.9 g/kg). All silages lacked up to three amino acids for each product according to FAO standards for essential amino acids. However, considering as the limiting factor only the amino acids below the 30% minimum requirement for fish in general, all products were satisfactory with respect to essential amino acids. Therefore, the results suggest that all products investigated are appropriate for use in balanced fish diets. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
Okadaic acid and its analogues are potent phosphatase inhibitors that cause Diarrheic Shellfish Poisoning (DSP) through the ingestion of contaminated shellfish by humans. This group of toxins is transmitted worldwide but the number of poisoning incidents has declined over the last 20 years due to legislation and monitoring programs that were implemented for bivalves. In the summer of 2012 and 2013, we collected a total of 101 samples of 22 different species that were made up of benthic and subtidal organisms such echinoderms, crustaceans, bivalves and gastropods from Madeira, São Miguel Island (Azores archipelago) and the northwestern coast of Morocco. The samples were analyzed by UPLC-MS/MS. Our main objective was to detect new vectors for these biotoxins. We can report nine new vectors for these toxins in the North Atlantic: Astropecten aranciacus, Arbacia lixula, Echinaster sepositus, Holothuria sanctori, Ophidiaster ophidianus, Onchidella celtica, Aplysia depilans, Patella spp., and Stramonita haemostoma. Differences in toxin contents among the species were found. Even though low concentrations were detected, the levels of toxins that were present, especially in edible species, indicate the importance of these types of studies. Routine monitoring should be extended to comprise a wider number of vectors other than for bivalves of okadaic acid and its analogues.
Resumo:
Okadaic acid and its analogues are potent phosphatase inhibitors that cause Diarrheic Shellfish Poisoning (DSP) through the ingestion of contaminated shellfish by humans. This group of toxins is transmitted worldwide but the number of poisoning incidents has declined over the last 20 years due to legislation and monitoring programs that were implemented for bivalves. In the summer of 2012 and 2013, we collected a total of 101 samples of 22 different species that were made up of benthic and subtidal organisms such echinoderms, crustaceans, bivalves and gastropods from Madeira, São Miguel Island (Azores archipelago) and the northwestern coast of Morocco. The samples were analyzed by UPLC-MS/MS. Our main objective was to detect new vectors for these biotoxins. We can report nine new vectors for these toxins in the North Atlantic: Astropecten aranciacus, Arbacia lixula, Echinaster sepositus, Holothuria sanctori, Ophidiaster ophidianus, Onchidella celtica, Aplysia depilans, Patella spp., and Stramonita haemostoma. Differences in toxin contents among the species were found. Even though low concentrations were detected, the levels of toxins that were present, especially in edible species, indicate the importance of these types of studies. Routine monitoring should be extended to comprise a wider number of vectors other than for bivalves of okadaic acid and its analogues.
Resumo:
Neuroblastoma (NB) is the deadliest cancer in early childhood. Around 25% of patients pre- sent MYCN-amplification (MNA) which is linked to poor prognosis, metastasis, and therapy- resistance. While retinoic acid (RA) is beneficial only for some NB patients, the cause of its resistance is still unknown. Thus, there remains a need for new therapies to treat NB. I show that MYCN-specific inhibition by the antigene oligonucleotide BGA002 in combination with 13-cis RA (BGA002-RA) overcome resistance in MNA-NB cell lines, leading to potent MYCN mRNA expression and protein decrease. Moreover, BGA002-RA reactivated neuron differentiation or led to apoptosis in MNA-NB cell lines, and inhibited invasiveness capacity. Since NB and PI3K/mTOR pathway are strictly related MYCN down-regulation by BGA002 led to mTOR pathway inhibition in MNA-NB, that was strengthened by BGA002-RA. I further analyzed if MYCN silencing may induce autophagy reactivation, and indeed BGA002-RA caused a massive increase in lysosomes and macrovacuoles in MNA-NB cells. In addition, while MYCN is known to induce angiogenesis, BGA002-RA in vivo treatment elim- inated the tumor vascularization in a MNA-NB mice model, and significantly increased the survival. Overall, these results indicate that MYCN modulation mediates the therapeutic efficacy of RA and the development of RA resistance in MNA-NB. Furthermore, by targeting MYCN, we show a cancer-specific way of mTOR pathway inhibition only in MNA-NB, avoiding side effects of targeting mTOR in normal cells. These findings warrant clinical testing of BGA002-RA as a potential strategy to overcome RA resistance in MNA-NB.
Resumo:
Duodeno-gastroesophageal reflux aspiration is associated with chronic lung allograft dysfunction (CLAD) and aspiration of bile acids (BA), functional molecules in the gastro-intestinal tract with emulsifying properties. While links between reflux aspiration to lung disease have been identified, the relevance of bile acid as molecular ligands and outcome predictors is poorly defined. We sought to determine and quantify the various BA species in airways of the lung transplant recipients to better understand the various effects of aspirated BA that contribute to post-transplantation outcomes and to investigate their molecular effects on airway function and contractility.
Resumo:
The thesis investigates two different in vitro aspects of Chlamydia trachomatis (CT). The thesis analyzes the effect of different sugars on CT infectivity. which is investigated on HeLa cells after 2 hour-incubation of elementary bodies (EBs) with glucose, sucrose or mannitol. Sugars effect on EB membrane fluidity is investigated by fluorescence anisotropy measurement, whereas changes in lipopolysaccharide exposure are examined by cytofluorimetric analysis. By Western blot experiments, the phosphorylation state of Focal Adhesion Kinase in cells infected with EBs pre-incubated with sugars it’s explored. Sugar significantly increase infectivity, acting on the EB structure. Sugars induce an increase of EB membrane fluidity, leading to changes in LPS exposure. After incubation with sucrose and mannitol, EBs lead to higher FAK phosphorylation, enhancing activation of anti-apoptotic and proliferative signals in the host. Secondly, the thesis explores the protective effect of different Lactobacilli against CT infection: Lactobacillus crispatus and Lactobacillus reuteri. CT infectivity is evaluated after host cells were treated for 1 hour with diluted supernatant cell-free fraction or with the bacterial cells. Assessed that L.crispatus is more protective than L.reuteri, lactic acid production is evaluated by HPLC. Subsequently Lactate dehydrogenases activity is evaluated by resazurin assay and by LC-MS. Then, D-lactate dehydrogenase specific activity has been investigated by measuring NADH formation. Afterwards, addition of D or L-lactic acid to L.reuteri supernatant has been performed and their effect in promoting protection in the host cells assessed. Then a metabolic analysis has been carried out by real-time measurement of mitochondrial respiration after treatment. Finally, histone acetylation and lactylation, and gene and protein expression of relevant targets, have been investigated. It is shown that the D isomer is more efficient in conferring protection, causing a shift in the host cell metabolic profile and a pattern of histone modifications that changes the expression of important targets.
Resumo:
Viscosupplements, used for treating joint and cartilage diseases, restore the rheological properties of synovial fluid, regulate joint homeostasis and act as scaffolds for cell growth and tissue regeneration. Most viscosupplements are hydrogels composed of hyaluronic acid (HA) microparticles suspended in fluid HA. These microparticles are crosslinked with chemicals to assure their stability against enzyme degradation and to prolong the action of the viscosupplement. However, the crosslinking also modifies the mechanical, swelling and rheological properties of the HA microparticle hydrogels, with consequences on the effectiveness of the application. The aim of this study is to correlate the crosslinking degree (CD) with these properties to achieve modulation of HA/DVS microparticles through CD control. Because divinyl sulfone (DVS) is the usual crosslinker of HA in viscosupplements, we examined the effects of CD by preparing HA microparticles at 1:1, 2:1, 3:1, and 5:1 HA/DVS mass ratios. The CD was calculated from inductively coupled plasma spectrometry data. HA microparticles were previously sized to a mean diameter of 87.5 µm. Higher CD increased the viscoelasticity and the extrusion force and reduced the swelling of the HA microparticle hydrogels, which also showed Newtonian pseudoplastic behavior and were classified as covalent weak. The hydrogels were not cytotoxic to fibroblasts according to an MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2014.
Resumo:
Acid drainage influence on the water and sediment quality was investigated in a coal mining area (southern Brazil). Mine drainage showed pH between 3.2 and 4.6 and elevated concentrations of sulfate, As and metals, of which, Fe, Mn and Zn exceeded the limits for the emission of effluents stated in the Brazilian legislation. Arsenic also exceeded the limit, but only slightly. Groundwater monitoring wells from active mines and tailings piles showed pH interval and chemical concentrations similar to those of mine drainage. However, the river and ground water samples of municipal public water supplies revealed a pH range from 7.2 to 7.5 and low chemical concentrations, although Cd concentration slightly exceeded the limit adopted by Brazilian legislation for groundwater. In general, surface waters showed large pH range (6 to 10.8), and changes caused by acid drainage in the chemical composition of these waters were not very significant. Locally, acid drainage seemed to have dissolved carbonate rocks present in the local stratigraphic sequence, attenuating the dispersion of metals and As. Stream sediments presented anomalies of these elements, which were strongly dependent on the proximity of tailings piles and abandoned mines. We found that precipitation processes in sediments and the dilution of dissolved phases were responsible for the attenuation of the concentrations of the metals and As in the acid drainage and river water mixing zone. In general, a larger influence of mining activities on the chemical composition of the surface waters and sediments was observed when enrichment factors in relation to regional background levels were used.
Resumo:
Cardiac arrest during heart surgery is a common procedure and allows the surgeon to perform surgical procedures in an environment free of blood and movement. Using a model of isolated rat heart, the authors compare a new cardioplegic solution containing histidine-tryptophan-glutamate (group 2) with the histidine-tryptophan-alphacetoglutarate (group 1) routinely used by some cardiac surgeons. To assess caspase, IL-8 and KI-67 in isolated rat hearts using immunohistochemistry. 20 Wistar male rats were anesthetized and heparinized. The chest was opened, cardioctomy was performed and 40 ml/kg of the appropriate cardioplegic solution was infused. The hearts were kept for 2 hours at 4ºC in the same solution, and thereafter, placed in the Langendorff apparatus for 30 minutes with Ringer-Locke solution. Immunohistochemistry analysis of caspase, IL-8, and KI-67 were performed. The concentration of caspase was lower in group 2 and Ki-67 was higher in group 2, both P<0.05. There was no statistical difference between the values of IL-8 between the groups. Histidine-tryptophan-glutamate solution was better than histidine-tryptophan-alphacetoglutarate solution because it reduced caspase (apoptosis), increased KI-67 (cell proliferation), and showed no difference in IL-8 levels compared to group 1. This suggests that the histidine-tryptophan-glutamate solution was more efficient than the histidine-tryptophan-alphacetoglutarate for the preservation of hearts of rat cardiomyocytes.
Resumo:
Valproic acid (VPA) and trichostatin A (TSA) are known histone deacetylase inhibitors (HDACIs) with epigenetic activity that affect chromatin supra-organization, nuclear architecture, and cellular proliferation, particularly in tumor cells. In this study, chromatin remodeling with effects extending to heterochromatic areas was investigated by image analysis in non-transformed NIH 3T3 cells treated for different periods with different doses of VPA and TSA under conditions that indicated no loss of cell viability. Image analysis revealed chromatin decondensation that affected not only euchromatin but also heterochromatin, concomitant with a decreased activity of histone deacetylases and a general increase in histone H3 acetylation. Heterochromatin protein 1-α (HP1-α), identified immunocytochemically, was depleted from the pericentromeric heterochromatin following exposure to both HDACIs. Drastic changes affecting cell proliferation and micronucleation but not alteration in CCND2 expression and in ratios of Bcl-2/Bax expression and cell death occurred following a 48-h exposure of the NIH 3T3 cells particularly in response to higher doses of VPA. Our results demonstrated that even low doses of VPA (0.05 mM) and TSA (10 ng/ml) treatments for 1 h can affect chromatin structure, including that of the heterochromatin areas, in non-transformed cells. HP1-α depletion, probably related to histone demethylation at H3K9me3, in addition to the effect of VPA and TSA on histone H3 acetylation, is induced on NIH 3T3 cells. Despite these facts, alterations in cell proliferation and micronucleation, possibly depending on mitotic spindle defects, require a longer exposure to higher doses of VPA and TSA.