994 resultados para 165 rRNA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vertebrate cells contain a large number of small nucleolar RNA (snoRNA) species, the vast majority of which bind fibrillarin. Most of the fibrillarin-associated snoRNAs can form 10- to 21-nt duplexes with rRNA and are thought to guide 2′-O-methylation of selected nucleotides in rRNA. These include mammalian UHG (U22 host gene)-encoded U25–U31 snoRNAs. We have characterized two novel human snoRNA species, U62 and U63, which similarly exhibit 15- (with one interruption) and 12-nt complementarities and are therefore predicted to direct 2′-O-methylation of A590 in 18S and A4531 in 28S rRNA, respectively. To establish the function of antisense snoRNAs in vertebrates, we exploited the Xenopus oocyte system. Cloning of the Xenopus U25–U31 snoRNA genes indicated that they are encoded within multiple homologs of mammalian UHG. Depletion of U25 from the Xenopus oocyte abolished 2′-O-methylation of G1448 in 18S rRNA; methylation could be restored by injecting either the Xenopus or human U25 transcript into U25-depleted oocytes. Comparison of Xenopus and human U25 sequences revealed that only boxes C, D, and D′, as well as the 18S rRNA complement, were invariant, suggesting that they may be the only elements required for U25 snoRNA stability and function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current global phylogenies are built predominantly on rRNA sequences. However, an experimental system for studying the evolution of rRNA is not readily available, mainly because the rRNA genes are highly repeated in most experimental organisms. We have constructed an Escherichia coli strain in which all seven chromosomal rRNA operons are inactivated by deletions spanning the 16S and 23S coding regions. A single E. coli rRNA operon carried by a multicopy plasmid supplies 16S and 23S rRNA to the cell. By using this strain we have succeeded in creating microorganisms that contain only a foreign rRNA operon derived from either Salmonella typhimurium or Proteus vulgaris, microorganisms that have diverged from E. coli about 120–350 million years ago. We also were able to replace the E. coli rRNA operon with an E. coli/yeast hybrid one in which the GTPase center of E. coli 23S rRNA had been substituted by the corresponding domain from Saccharomyces cerevisiae. These results suggest that, contrary to common belief, coevolution of rRNA with many other components in the translational machinery may not completely preclude the horizontal transfer of rRNA genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Six alternative hypotheses for the phylogenetic origin of Bilateria are evaluated by using complete 18S rRNA gene sequences for 52 taxa. These data suggest that there is little support for three of these hypotheses. Bilateria is not likely to be the sister group of Radiata or Ctenophora, nor is it likely that Bilateria gave rise to Cnidaria or Ctenophora. Instead, these data reveal a close relationship between bilaterians, placozoans, and cnidarians. From this, several inferences can be drawn. Morphological features that previously have been identified as synapomorphies of Bilateria and Ctenophora, e.g., mesoderm, more likely evolved independently in each clade. The endomesodermal muscles of bilaterians may be homologous to the endodermal muscles of cnidarians, implying that the original bilaterian mesodermal muscles were myoepithelial. Placozoans should have a gastrulation stage during development. Of the three hypotheses that cannot be falsified with the 18S rRNA data, one is most strongly supported. This hypothesis states that Bilateria and Placozoa share a more recent common ancestor than either does to Cnidaria. If true, the simplicity of placozoan body architecture is secondarily derived from a more complex ancestor. This simplification may have occurred in association with a planula-type larva becoming reproductive before metamorphosis. If this simplification took place during the common history that placozoans share with bilaterians, then placozoan genes that contain a homeobox, such as Trox2, should be explored, for they may include the gene or genes most closely related to Hox genes of bilaterians.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The U3 small nucleolar ribonucleoprotein (snoRNP) is required for three cleavage events that generate the mature 18S rRNA from the pre-rRNA. In Saccharomyces cerevisiae, depletion of Mpp10, a U3 snoRNP-specific protein, halts 18S rRNA production and impairs cleavage at the three U3 snoRNP-dependent sites: A0, A1, and A2. We have identified truncation mutations of Mpp10 that affect 18S rRNA synthesis and confer cold-sensitivity and slow growth. However, distinct from yeast cells depleted of Mpp10, the mutants carrying these truncated Mpp10 proteins accumulate a novel precursor, resulting from cleavage at only A0. The Mpp10 truncations do not alter association of Mpp10 with the U3 snoRNA, nor do they affect snoRNA or protein stability. Thus, the role in processing of the U3 snoRNP can be separated into cleavage at the A0 site, which occurs in the presence of truncated Mpp10, and cleavage at the A1/A2 sites, which occurs only with intact Mpp10. These results strongly argue for a role for Mpp10 in processing at the A1/A2 sites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Escherichia coli mRNA translation is facilitated by sequences upstream and downstream of the initiation codon, called Shine–Dalgarno (SD) and downstream box (DB) sequences, respectively. In E.coli enhancing the complementarity between the DB sequences and the 16S rRNA penultimate stem resulted in increased protein accumulation without a significant affect on mRNA stability. The objective of this study was to test whether enhancing the complementarity of plastid mRNAs downstream of the AUG (downstream sequence or DS) with the 16S rRNA penultimate stem (anti-DS or ADS region) enhances protein accumulation. The test system was the tobacco plastid rRNA operon promoter fused with the E.coli phage T7 gene 10 (T7g10) 5′-untranslated region (5′-UTR) and DB region. Translation efficiency was tested by measuring neomycin phosphotransferase (NPTII) accumulation in tobacco chloroplasts. We report here that the phage T7g10 5′-UTR and DB region promotes accumulation of NPTII up to ∼16% of total soluble leaf protein (TSP). Enhanced mRNA stability and an improved NPTII yield (∼23% of TSP) was obtained from a construct in which the T7g10 5′-UTR was linked with the NPTII coding region via a NheI site. However, replacing the T7g10 DB region with the plastid DS sequence reduced NPTII and mRNA levels to 0.16 and 28%, respectively. Reduced NPTII accumulation is in part due to accelerated mRNA turnover.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

U2449 is one of many invariant residues in the central loop of domain V of 23S rRNA, a region that constitutes part of the peptidyltransferase center of the ribosome. In Escherichia coli, this U is post-transcriptionally modified to dihydrouridine (D) and is the only D modification found in E.coli rRNAs. To analyze the role of this base and its modification in ribosomal function, all three base substitutions were constructed on a plasmid copy of the rrnB operon and assayed for their ability to support cell growth in a strain of E.coli lacking chromosomal rrn operons. Both purine substitution mutations were not viable. However, growth and antibiotic sensitivity of cells expressing only the mutant D2449C rRNA was indistinguishable from wild type. We conclude that while a pyrimidine is required at position 2449 for proper ribosomal function, the D modification is dispensable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The epsilon enhancer element is a pyrimidine-rich sequence that increases expression of T7 gene 10 and a number of Escherichia coli mRNAs during initiation of translation and inhibits expression of the recF mRNA during elongation. Based on its complementarity to the 460 region of 16S rRNA, it has been proposed that epsilon exerts its enhancer activity by base pairing to this complementary rRNA sequence. We have tested this model of enhancer action by constructing mutations in the 460 region of 16S rRNA and examining expression of epsilon-containing CAT reporter genes and recF–lacZ fusions in strains expressing the mutant rRNAs. Replacement of the 460 E.coli stem–loop with that of Salmonella enterica serovar Typhimurium or a stem–loop containing a reversal of all 8 bp in the helical region produced fully functional rRNAs with no apparent effect on cell growth or expression of any epsilon-containing mRNA. Our experiments confirm the reported effects of the epsilon elements on gene expression but show that these effects are independent of the sequence of the 460 region of 16S rRNA, indicating that epsilon–rRNA base pairing does not occur.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Drosophila dribble (dbe) gene encodes a KH domain protein, homologous to yeast KRR1p. Expression of dbe transcripts is ubiquitous during embryogenesis. Overexpressed Dribble protein is localized in the nucleus and in some cell types in a subregion of the nucleolus. Homozygous dbe mutants die at first instar larval stage. Clonal analyses suggest that dbe+ is required for survival of dividing cells. In dbe mutants, a novel rRNA-processing defect is found and accumulation of an abnormal rRNA precursor is detected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The plastid rRNA (rrn) operon in chloroplasts of tobacco (Nicotiana tabacum), maize, and pea is transcribed by the plastid-encoded plastid RNA polymerase from a ς70-type promoter (P1). In contrast, the rrn operon in spinach (Spinacia oleracea) and mustard chloroplasts is transcribed from the distinct Pc promoter, probably also by the plastid-encoded plastid RNA polymerase. Primer-extension analysis reported here indicates that in Arabidopsis both promoters may be active. To understand promoter selection in the plastid rrn operon in the different species, we have tested transcription from the spinach rrn promoter in transplastomic tobacco and from the tobacco rrn promoter in transplastomic Arabidopsis. Our data suggest that transcription of the rrn operon depends on species-specific factors that facilitate transcription initiation by the general transcription machinery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phylogenetic analysis of ribosomal RNA sequences obtained from uncultivated organisms of a hot spring in Yellowstone National Park reveals several novel groups of Archaea, many of which diverged from the crenarchaeal line of descent prior to previously characterized members of that kingdom. Universal phylogenetic trees constructed with the addition of these sequences indicate monophyly of Archaea, with modest bootstrap support. The data also show a specific relationship between low-temperature marine Archaea and some hot spring Archaea. Two of the environmental sequences are enigmatic: depending upon the data set and analytical method used, these sequences branch deeply within the Crenarchaeota, below the bifurcation between Crenarchaeota and Euryarchaeota, or even as the sister group to Eukaryotes. If additional data confirm either of the latter two placements, then the organisms represented by these ribosomal RNA sequences would merit recognition as a new kingdom, provisionally named "Korarchaeota."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although rRNA has a conserved core structure, its size varies by more than 2000 bases between eubacteria and vertebrates, mostly due to the size variation of discrete variable regions. Previous studies have shown that insertion of foreign sequences into some of these variable regions has little effect on rRNA function. These properties make rRNA a potentially very advantageous vehicle to carry other RNA moieties with biological activity, such as "antisense RNAs." We have explored this possibility by inserting antisense RNAs targeted against one essential and two nonessential genes into a site within a variable region in the Tetrahymena thermophila large subunit rRNA gene. Expression of each of the three genes tested can be drastically reduced or eliminated in transformed T. thermophila lines containing these altered rRNAs. In addition, we found that only antisense rRNAs containing RNA sequences complementary to the 5' untranslated region of the targeted mRNA were effective. Lines containing antisense rRNAs targeted against either of the nonessential genes grow well, indicating that the altered rRNAs fulfill their functions within the ribosome. Since functional rRNA is extremely abundant and stable and comes into direct contact with translated mRNAs, it may prove to be an unparalleled vehicle for enhancing the activity of functional RNAs that act on mRNAs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microorganisms play an important role in the biogeochemistry of the ocean surface layer, but spatial and temporal structures in the distributions of specific bacterioplankton species are largely unexplored, with the exceptions of those organisms that can be detected by either autofluorescence or culture methods. The use of rRNA genes as genetic markers provides a tool by which patterns in the growth, distribution, and activity of abundant bacterioplankton species can be studied regardless of the ease with which they can be cultured. Here we report an unusual cluster of related 16S rRNA genes (SAR202, SAR263, SAR279, SAR287, SAR293, SAR307) cloned from seawater collected at 250 m in the Sargasso Sea in August 1991, when the water column was highly stratified and the deep chlorophyll maximum was located at a depth of 120 m. Phylogenetic analysis and an unusual 15-bp deletion confirmed that the genes were related to the Green Non-Sulfur phylum of the domain Bacteria. This is the first evidence that representatives of this phylum occur in the open ocean. Oligonucleotide probes were used to examine the distribution of the SAR202 gene cluster in vertical profiles (0-250 m) from the Atlantic and Pacific Oceans, and in discrete (monthly) time series (O and 200 m) (over 30 consecutive months in the Western Sargasso Sea. The data provide robust statistical support for the conclusion that the SAR202 gene cluster is proportionately most abundant at the lower boundary of the deep chlorophyll maximum (P = 2.33 x 10(-5)). These results suggest that previously unsuspected stratification of microbial populations may be a significant factor in the ecology of the ocean surface layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A pentapeptide open reading frame equipped with a canonical ribosome-binding site is present in the Escherichia coli 23S rRNA. Overexpression of 23S rRNA fragments containing the mini-gene renders cells resistant to the ribosome-inhibiting antibiotic erythromycin. Mutations that change either the initiator or stop codons of the peptide mini-gene result in the loss of erythromycin resistance. Nonsense mutations in the mini-gene also abolish erythromycin resistance, which can be restored in the presence of the suppressor tRNA, thus proving that expression of the rRNA-encoded peptide is essential for the resistance phenotype. The ribosome appears to be the likely target of action of the rRNA-encoded pentapeptide, because in vitro translation of the peptide mini-gene decreases the inhibitory action of erythromycin on cell-free protein synthesis. Thus, the new mechanism of drug resistance reveals that in addition to the structural and functional role of rRNA in the ribosome, it may also have a peptide-coding function.