672 resultados para 1463
Resumo:
An Ensemble Kalman Filter is applied to assimilate observed tracer fields in various combinations in the Bern3D ocean model. Each tracer combination yields a set of optimal transport parameter values that are used in projections with prescribed CO2 stabilization pathways. The assimilation of temperature and salinity fields yields a too vigorous ventilation of the thermocline and the deep ocean, whereas the inclusion of CFC-11 and radiocarbon improves the representation of physical and biogeochemical tracers and of ventilation time scales. Projected peak uptake rates and cumulative uptake of CO2 by the ocean are around 20% lower for the parameters determined with CFC-11 and radiocarbon as additional target compared to those with salinity and temperature only. Higher surface temperature changes are simulated in the Greenland–Norwegian–Iceland Sea and in the Southern Ocean when CFC-11 is included in the Ensemble Kalman model tuning. These findings highlights the importance of ocean transport calibration for the design of near-term and long-term CO2 emission mitigation strategies and for climate projections.
Resumo:
This study analyses the impact on the oceanic mean state of the evolution of the oceanic component (NEMO) of the climate model developed at Institut Pierre Simon Laplace (IPSL-CM), from the version IPSL-CM4, used for third phase of the Coupled Model Intercomparison Project (CMIP3), to IPSL-CM5A, used for CMIP5. Several modifications have been implemented between these two versions, in particular an interactive coupling with a biogeochemical module, a 3-band model for the penetration of the solar radiation, partial steps at the bottom of the ocean and a set of physical parameterisations to improve the representation of the impact of turbulent and tidal mixing. A set of forced and coupled experiments is used to single out the effect of each of these modifications and more generally the evolution of the oceanic component on the IPSL coupled models family. Major improvements are located in the Southern Ocean, where physical parameterisations such as partial steps and tidal mixing reinforce the barotropic transport of water mass, in particular in the Antarctic Circumpolar Current) and ensure a better representation of Antarctic bottom water masses. However, our analysis highlights that modifications, which substantially improve ocean dynamics in forced configuration, can yield or amplify biases in coupled configuration. In particular, the activation of radiative biophysical coupling between biogeochemical cycle and ocean dynamics results in a cooling of the ocean mean state. This illustrates the difficulty to improve and tune coupled climate models, given the large number of degrees of freedom and the potential compensating effects masking some biases.
Resumo:
The redox property of ceria is a key factor in the catalytic activity of ceria-based catalysts. The oxidation state of well-defined ceria nanocubes in gas environments was analysed in situ by a novel combination of near-ambient pressure X-ray Photoelectron Spectroscopy (XPS) and high-energy XPS at a synchrotron X-ray source. In situ high-energy XPS is a promising new tool to determine the electronic structure of matter under defined conditions. The aim was to quantitatively determine the degree of cerium reduction in a nano-structured ceria-supported platinum catalyst as a function of the gas environment. To obtain a non-destructive depth profile at near-ambient pressure, in situ high-energy XPS analysis was performed by varying the kinetic energy of photoelectrons from 1 to 5 keV, and, thus, the probing depth. In ceria nanocubes doped with platinum, oxygen vacancies formed only in the uppermost layers of ceria in an atmosphere of 1 mbar hydrogen and 403 K. For pristine ceria nanocubes, no change in the cerium oxidation state in various hydrogen or oxygen atmospheres was observed as a function of probing depth. In the absence of platinum, hydrogen does not dissociate and, thus, does not lead to reduction of ceria.
Resumo:
Starting from the idea that places are socially constructed, this essay explores how place is established and lived in Xinjiang by the members of the area’s two largest ethnicities, the Uyghur and the Han. This paper demonstrates that there are differences in the ways Han and Uyghur imagine and ‘live’ Xinjiang. At the same time it asserts that Uyghur and Han do not establish distinct spatial relationships just because of their ethnicity, but also to enhance ethnic solidarity and boundaries vis-à-vis the other. This essay also demonstrates that places are historically contingent, and it discusses the ways in which the influx of Han temporary migrants and settlers—and Han capital—has generated new layers of spatial meaning and new power differentials.
Resumo:
The understanding of the charge transport through single molecule junctions is a prerequisite for the design and building of electronic circuits based on single molecule junctions. However, reliable and robust formation of such junctions is a challenging task to achieve. In this topical review, we present a systematic investigation of the anchoring group effect on single molecule junction conductance by employing two complementary techniques, namely scanning tunneling microscopy break junction (STM-BJ) and mechanically controllable break junction (MCBJ) techniques, based on the studies published in the literature and important results from our own work. We compared conductance studies for conventional anchoring groups described earlier with the molecular junctions formed through π-interactions with the electrode surface (Au, Pt, Ag) and we also summarized recent developments in the formation of highly conducting covalent Au–C σ-bonds using oligophenyleneethynylene (OPE) and an alkane molecular backbone. Specifically, we focus on the electron transport properties of diaryloligoyne, oligophenyleneethynylene (OPE) and/or alkane molecular junctions composed of several traditional anchoring groups, (dihydrobenzo[b]thiophene (BT), 5-benzothienyl analogue (BTh), thiol (SH), pyridyl (PY), amine (NH2), cyano (CN), methyl sulphide (SMe), nitro (NO2)) and other anchoring groups at the solid/liquid interface. The qualitative and quantitative comparison of the results obtained with different anchoring groups reveals structural and mechanistic details of the different types of single molecular junctions. The results reported in this prospective may serve as a guideline for the design and synthesis of molecular systems to be used in molecule-based electronic devices.
Resumo:
A direct electron transfer process between bacterial cells of electrogenic species Geobacter sulfurreducens (Gs) and electrified electrode surfaces was studied to exploit the reactivity of Gs submonolayers on gold and silver surfaces. A submonolayer of Gs was prepared and studied to explore specifically the heterogeneous electron transfer properties at the bacteria/electrode interface. In situ microscopic techniques characterised the morphology of the Gs submonolayers under the operating conditions. In addition, complementary in situ spectroscopic techniques that allowed us to access in situ molecular information of the Gs with high surface selectivity and sensitivity were employed. The results provided clear evidence that the outermost cytochrome C in Gs is responsible for the heterogeneous electron transfer, which is in direct contact with the metal electrode. Feasibility of single cell in situ studies under operating conditions was demonstrated where the combination of surface-electrochemical tools at the nano- and micro-scale with microbiological approaches can offer unique opportunities for the emerging field of electro-microbiology to explore processes and interactions between microorganisms and electrical devices.
Resumo:
A protected S-acetylthio porphyrin was synthesized and attached to the Au38(2-phenylethanethiolate)24 cluster in a ligand exchange reaction. Chiral high performance liquid chromatography of the functionalized cluster yielded enantiomeric pairs of clusters probably differing in the binding site of the porphyrin. As proven by circular dichroism, the chirality was maintained. Exciton coupling between the cluster and the chromophore is observed. Zinc can be incorporated into the porphyrin attached to the cluster, as evidenced by absorption and fluorescence spectroscopy, however, the reaction is slow. Quenching of the chromophore fluorescence is observed, which can be explained by energy transfer from the porphyrin to the cluster. Transient absorption spectra of Au38(2-phenylethanethiolate)24 and the functionalized cluster probe the bleach of the gold cluster due to ground state absorption and the characteristic excited state absorption signals. Zinc incorporation does not have a pronounced effect on the photophysical behaviour. Decay times are typical for the molecular behaviour of small monolayer protected gold clusters.
Resumo:
OBJECTIVES Respondent-driven sampling (RDS) is a new data collection methodology used to estimate characteristics of hard-to-reach groups, such as the HIV prevalence in drug users. Many national public health systems and international organizations rely on RDS data. However, RDS reporting quality and available reporting guidelines are inadequate. We carried out a systematic review of RDS studies and present Strengthening the Reporting of Observational Studies in Epidemiology for RDS Studies (STROBE-RDS), a checklist of essential items to present in RDS publications, justified by an explanation and elaboration document. STUDY DESIGN AND SETTING We searched the MEDLINE (1970-2013), EMBASE (1974-2013), and Global Health (1910-2013) databases to assess the number and geographical distribution of published RDS studies. STROBE-RDS was developed based on STROBE guidelines, following Guidance for Developers of Health Research Reporting Guidelines. RESULTS RDS has been used in over 460 studies from 69 countries, including the USA (151 studies), China (70), and India (32). STROBE-RDS includes modifications to 12 of the 22 items on the STROBE checklist. The two key areas that required modification concerned the selection of participants and statistical analysis of the sample. CONCLUSION STROBE-RDS seeks to enhance the transparency and utility of research using RDS. If widely adopted, STROBE-RDS should improve global infectious diseases public health decision making.
Resumo:
Vorbesitzer: Karmeliterkloster Frankfurt am Main
Identification of adsorbed molecules via STM tip manipulation: CO, H₂O, and O₂ on TiO₂ anatase (101)
Resumo:
While Scanning Tunneling Microscopy (STM) has evolved as an ideal tool to study surface chemistry at the atomic scale, the identification of adsorbed species is often not straightforward. This paper describes a way to reliably identify H2O, CO and O2 on the TiO2 anatase (101) surface with STM. These molecules are of a key importance in the surface chemistry of this and many other (photo-) catalytic materials. They exhibit a wide variety of contrasts in STM images, depending on the tip condition. With clean, metallic tips the molecules appear very similar, i.e., as bright, dimer-like features located in the proximity of surface Ti5c atoms. However, each species exhibits a specific response to the electric field applied by the STM tip. It is shown that this tip–adsorbate interaction can be used to reliably ascertain the identity of such species. The tip–adsorbate interactions, together with comparison of experimental and calculated STM images, are used to analyse and revisit the assignments of molecular adsorbed species reported in recent studies.