852 resultados para 080109 Pattern Recognition and Data Mining


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il trauma cranico é tra le piú importanti patologie traumatiche. Ogni anno 250 pazienti ogni 100.000 abitanti vengono ricoverati in Italia per un trauma cranico. La mortalitá é di circa 17 casi per 100.000 abitanti per anno. L’Italia si trova in piena “media” Europea considerando l’incidenza media in Europa di 232 casi per 100.000 abitanti ed una mortalitá di 15 casi per 100.000 abitanti. Degli studi hanno indicato come una terapia anticoagulante é uno dei principali fattori di rischio di evolutiviá di una lesione emorragica. Al contrario della terapia anticoagulante, il rischio emorragico correlato ad una terapia antiaggregante é a tutt’oggi ancora in fase di verifica. Il problema risulta rilevante in particolare nella popolazione occidentale in quanto l’impiego degli antiaggreganti é progressivamente sempre piú diffuso. Questo per la politica di prevenzione sostenuta dalle linee guida nazionali e internazionali in termini di prevenzione del rischio cardiovascolare, in particolare nelle fasce di popolazione di etá piú avanzata. Per la prima volta, é stato dimostrato all’ospedale di Forlí[1], su una casistica sufficientemente ampia, che la terapia cronica con antiaggreganti, per la preven- zione del rischio cardiovascolare, puó rivelarsi un significativo fattore di rischio di complicanze emorragiche in un soggetto con trauma cranico, anche di grado lieve. L’ospedale per approfondire e convalidare i risultati della ricerca ha condotto, nell’anno 2009, una nuova indagine. La nuova indagine ha coinvolto oltre l’ospedale di Forlí altri trentuno centri ospedalieri italiani. Questo lavoro di ricerca vuole, insieme ai ricercatori dell’ospedale di Forlí, verificare: “se una terapia con antiaggreganti influenzi l’evolutivitá, in senso peggiorativo, di una lesione emorragica conseguente a trauma cranico lieve - moderato - severo in un soggetto adulto”, grazie ai dati raccolti dai centri ospedalieri nel 2009. Il documento é strutturato in due parti. La prima parte piú teorica, vuole fissare i concetti chiave riguardanti il contesto della ricerca e la metodologia usata per analizzare i dati. Mentre, la seconda parte piú pratica, vuole illustrare il lavoro fatto per rispondere al quesito della ricerca. La prima parte é composta da due capitoli, che sono: • Il capitolo 1: dove sono descritti i seguenti concetti: cos’é un trauma cra- nico, cos’é un farmaco di tipo anticoagulante e cos’é un farmaco di tipo antiaggregante; • Il capitolo 2: dove é descritto cos’é il Data Mining e quali tecniche sono state usate per analizzare i dati. La seconda parte é composta da quattro capitoli, che sono: • Il capitolo 3: dove sono state descritte: la struttura dei dati raccolti dai trentadue centri ospedalieri, la fase di pre-processing e trasformazione dei dati. Inoltre in questo capitolo sono descritti anche gli strumenti utilizzati per analizzare i dati; • Il capitolo 4: dove é stato descritto come é stata eseguita l’analisi esplorativa dei dati. • Il capitolo 5: dove sono descritte le analisi svolte sui dati e soprattutto i risultati che le analisi, grazie alle tecniche di Data Mining, hanno prodotto per rispondere al quesito della ricerca; • Il capitolo 6: dove sono descritte le conclusioni della ricerca. Per una maggiore comprensione del lavoro sono state aggiunte due appendici. La prima tratta del software per data mining Weka, utilizzato per effettuare le analisi. Mentre, la seconda tratta dell’implementazione dei metodi per la creazione degli alberi decisionali.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Gaia space mission is a major project for the European astronomical community. As challenging as it is, the processing and analysis of the huge data-flow incoming from Gaia is the subject of thorough study and preparatory work by the DPAC (Data Processing and Analysis Consortium), in charge of all aspects of the Gaia data reduction. This PhD Thesis was carried out in the framework of the DPAC, within the team based in Bologna. The task of the Bologna team is to define the calibration model and to build a grid of spectro-photometric standard stars (SPSS) suitable for the absolute flux calibration of the Gaia G-band photometry and the BP/RP spectrophotometry. Such a flux calibration can be performed by repeatedly observing each SPSS during the life-time of the Gaia mission and by comparing the observed Gaia spectra to the spectra obtained by our ground-based observations. Due to both the different observing sites involved and the huge amount of frames expected (≃100000), it is essential to maintain the maximum homogeneity in data quality, acquisition and treatment, and a particular care has to be used to test the capabilities of each telescope/instrument combination (through the “instrument familiarization plan”), to devise methods to keep under control, and eventually to correct for, the typical instrumental effects that can affect the high precision required for the Gaia SPSS grid (a few % with respect to Vega). I contributed to the ground-based survey of Gaia SPSS in many respects: with the observations, the instrument familiarization plan, the data reduction and analysis activities (both photometry and spectroscopy), and to the maintenance of the data archives. However, the field I was personally responsible for was photometry and in particular relative photometry for the production of short-term light curves. In this context I defined and tested a semi-automated pipeline which allows for the pre-reduction of imaging SPSS data and the production of aperture photometry catalogues ready to be used for further analysis. A series of semi-automated quality control criteria are included in the pipeline at various levels, from pre-reduction, to aperture photometry, to light curves production and analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il citofluorimetro è uno strumento impiegato in biologia genetica per analizzare dei campioni cellulari: esso, analizza individualmente le cellule contenute in un campione ed estrae, per ciascuna cellula, una serie di proprietà fisiche, feature, che la descrivono. L’obiettivo di questo lavoro è mettere a punto una metodologia integrata che utilizzi tali informazioni modellando, automatizzando ed estendendo alcune procedure che vengono eseguite oggi manualmente dagli esperti del dominio nell’analisi di alcuni parametri dell’eiaculato. Questo richiede lo sviluppo di tecniche biochimiche per la marcatura delle cellule e tecniche informatiche per analizzare il dato. Il primo passo prevede la realizzazione di un classificatore che, sulla base delle feature delle cellule, classifichi e quindi consenta di isolare le cellule di interesse per un particolare esame. Il secondo prevede l'analisi delle cellule di interesse, estraendo delle feature aggregate che possono essere indicatrici di certe patologie. Il requisito è la generazione di un report esplicativo che illustri, nella maniera più opportuna, le conclusioni raggiunte e che possa fungere da sistema di supporto alle decisioni del medico/biologo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lo studio dell’intelligenza artificiale si pone come obiettivo la risoluzione di una classe di problemi che richiedono processi cognitivi difficilmente codificabili in un algoritmo per essere risolti. Il riconoscimento visivo di forme e figure, l’interpretazione di suoni, i giochi a conoscenza incompleta, fanno capo alla capacità umana di interpretare input parziali come se fossero completi, e di agire di conseguenza. Nel primo capitolo della presente tesi sarà costruito un semplice formalismo matematico per descrivere l’atto di compiere scelte. Il processo di “apprendimento” verrà descritto in termini della massimizzazione di una funzione di prestazione su di uno spazio di parametri per un ansatz di una funzione da uno spazio vettoriale ad un insieme finito e discreto di scelte, tramite un set di addestramento che descrive degli esempi di scelte corrette da riprodurre. Saranno analizzate, alla luce di questo formalismo, alcune delle più diffuse tecniche di artificial intelligence, e saranno evidenziate alcune problematiche derivanti dall’uso di queste tecniche. Nel secondo capitolo lo stesso formalismo verrà applicato ad una ridefinizione meno intuitiva ma più funzionale di funzione di prestazione che permetterà, per un ansatz lineare, la formulazione esplicita di un set di equazioni nelle componenti del vettore nello spazio dei parametri che individua il massimo assoluto della funzione di prestazione. La soluzione di questo set di equazioni sarà trattata grazie al teorema delle contrazioni. Una naturale generalizzazione polinomiale verrà inoltre mostrata. Nel terzo capitolo verranno studiati più nel dettaglio alcuni esempi a cui quanto ricavato nel secondo capitolo può essere applicato. Verrà introdotto il concetto di grado intrinseco di un problema. Verranno inoltre discusse alcuni accorgimenti prestazionali, quali l’eliminazione degli zeri, la precomputazione analitica, il fingerprinting e il riordino delle componenti per lo sviluppo parziale di prodotti scalari ad alta dimensionalità. Verranno infine introdotti i problemi a scelta unica, ossia quella classe di problemi per cui è possibile disporre di un set di addestramento solo per una scelta. Nel quarto capitolo verrà discusso più in dettaglio un esempio di applicazione nel campo della diagnostica medica per immagini, in particolare verrà trattato il problema della computer aided detection per il rilevamento di microcalcificazioni nelle mammografie.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Supernovae are among the most energetic events occurring in the universe and are so far the only verified extrasolar source of neutrinos. As the explosion mechanism is still not well understood, recording a burst of neutrinos from such a stellar explosion would be an important benchmark for particle physics as well as for the core collapse models. The neutrino telescope IceCube is located at the Geographic South Pole and monitors the antarctic glacier for Cherenkov photons. Even though it was conceived for the detection of high energy neutrinos, it is capable of identifying a burst of low energy neutrinos ejected from a supernova in the Milky Way by exploiting the low photomultiplier noise in the antarctic ice and extracting a collective rate increase. A signal Monte Carlo specifically developed for water Cherenkov telescopes is presented. With its help, we will investigate how well IceCube can distinguish between core collapse models and oscillation scenarios. In the second part, nine years of data taken with the IceCube precursor AMANDA will be analyzed. Intensive data cleaning methods will be presented along with a background simulation. From the result, an upper limit on the expected occurrence of supernovae within the Milky Way will be determined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antibody microarrays are of great research interest because of their potential application as biosensors for high-throughput protein and pathogen screening technologies. In this active area, there is still a need for novel structures and assemblies providing insight in binding interactions such as spherical and annulus-shaped protein structures, e.g. for the utilization of curved surfaces for the enhanced protein-protein interactions and detection of antigens. Therefore, the goal of the presented work was to establish a new technique for the label-free detection of bio-molecules and bacteria on topographically structured surfaces, suitable for antibody binding.rnIn the first part of the presented thesis, the fabrication of monolayers of inverse opals with 10 μm diameter and the immobilization of antibodies on their interior surface is described. For this purpose, several established methods for the linking of antibodies to glass, including Schiff bases, EDC/S-NHS chemistry and the biotin-streptavidin affinity system, were tested. The employed methods included immunofluorescence and image analysis by phase contrast microscopy. It could be shown that these methods were not successful in terms of antibody immobilization and adjacent bacteria binding. Hence, a method based on the application of an active-ester-silane was introduced. It showed promising results but also the need for further analysis. Especially the search for alternative antibodies addressing other antigens on the exterior of bacteria will be sought-after in the future.rnAs a consequence of the ability to control antibody-functionalized surfaces, a new technique employing colloidal templating to yield large scale (~cm2) 2D arrays of antibodies against E. coli K12, eGFP and human integrin αvβ3 on a versatile useful glass surface is presented. The antibodies were swept to reside around the templating microspheres during solution drying, and physisorbed on the glass. After removing the microspheres, the formation of annuli-shaped antibody structures was observed. The preserved antibody structure and functionality is shown by binding the specific antigens and secondary antibodies. The improved detection of specific bacteria from a crude solution compared to conventional “flat” antibody surfaces and the setting up of an integrin-binding platform for targeted recognition and surface interactions of eukaryotic cells is demonstrated. The structures were investigated by atomic force, confocal and fluorescence microscopy. Operational parameters like drying time, temperature, humidity and surfactants were optimized to obtain a stable antibody structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aging process is characterized by the progressive fitness decline experienced at all the levels of physiological organization, from single molecules up to the whole organism. Studies confirmed inflammaging, a chronic low-level inflammation, as a deeply intertwined partner of the aging process, which may provide the “common soil” upon which age-related diseases develop and flourish. Thus, albeit inflammation per se represents a physiological process, it can rapidly become detrimental if it goes out of control causing an excess of local and systemic inflammatory response, a striking risk factor for the elderly population. Developing interventions to counteract the establishment of this state is thus a top priority. Diet, among other factors, represents a good candidate to regulate inflammation. Building on top of this consideration, the EU project NU-AGE is now trying to assess if a Mediterranean diet, fortified for the elderly population needs, may help in modulating inflammaging. To do so, NU-AGE enrolled a total of 1250 subjects, half of which followed a 1-year long diet, and characterized them by mean of the most advanced –omics and non –omics analyses. The aim of this thesis was the development of a solid data management pipeline able to efficiently cope with the results of these assays, which are now flowing inside a centralized database, ready to be used to test the most disparate scientific hypotheses. At the same time, the work hereby described encompasses the data analysis of the GEHA project, which was focused on identifying the genetic determinants of longevity, with a particular focus on developing and applying a method for detecting epistatic interactions in human mtDNA. Eventually, in an effort to propel the adoption of NGS technologies in everyday pipeline, we developed a NGS variant calling pipeline devoted to solve all the sequencing-related issues of the mtDNA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Information is nowadays a key resource: machine learning and data mining techniques have been developed to extract high-level information from great amounts of data. As most data comes in form of unstructured text in natural languages, research on text mining is currently very active and dealing with practical problems. Among these, text categorization deals with the automatic organization of large quantities of documents in priorly defined taxonomies of topic categories, possibly arranged in large hierarchies. In commonly proposed machine learning approaches, classifiers are automatically trained from pre-labeled documents: they can perform very accurate classification, but often require a consistent training set and notable computational effort. Methods for cross-domain text categorization have been proposed, allowing to leverage a set of labeled documents of one domain to classify those of another one. Most methods use advanced statistical techniques, usually involving tuning of parameters. A first contribution presented here is a method based on nearest centroid classification, where profiles of categories are generated from the known domain and then iteratively adapted to the unknown one. Despite being conceptually simple and having easily tuned parameters, this method achieves state-of-the-art accuracy in most benchmark datasets with fast running times. A second, deeper contribution involves the design of a domain-independent model to distinguish the degree and type of relatedness between arbitrary documents and topics, inferred from the different types of semantic relationships between respective representative words, identified by specific search algorithms. The application of this model is tested on both flat and hierarchical text categorization, where it potentially allows the efficient addition of new categories during classification. Results show that classification accuracy still requires improvements, but models generated from one domain are shown to be effectively able to be reused in a different one.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die vorliegende Arbeit befasst sich mit der Synthese und Charakterisierung von Polymeren mit redox-funktionalen Phenothiazin-Seitenketten. Phenothiazin und seine Derivate sind kleine Redoxeinheiten, deren reversibles Redoxverhalten mit electrochromen Eigenschaften verbunden ist. Das besondere an Phenothiazine ist die Bildung von stabilen Radikalkationen im oxidierten Zustand. Daher können Phenothiazine als bistabile Moleküle agieren und zwischen zwei stabilen Redoxzuständen wechseln. Dieser Schaltprozess geht gleichzeitig mit einer Farbveränderung an her.rnrnIm Rahmen dieser Arbeit wird die Synthese neuartiger Phenothiazin-Polymere mittels radikalischer Polymerisation beschrieben. Phenothiazin-Derivate wurden kovalent an aliphatischen und aromatischen Polymerketten gebunden. Dies erfolgte über zwei unterschiedlichen synthetischen Routen. Die erste Route beinhaltet den Einsatz von Vinyl-Monomeren mit Phenothiazin Funktionalität zur direkten Polymerisation. Die zweite Route verwendet Amin modifizierte Phenothiazin-Derivate zur Funktionalisierung von Polymeren mit Aktivester-Seitenketten in einer polymeranalogen Reaktion. rnrnPolymere mit redox-funktionalen Phenothiazin-Seitenketten sind aufgrund ihrer Elektron-Donor-Eigenschaften geeignete Kandidaten für die Verwendung als Kathodenmaterialien. Zur Überprüfung ihrer Eignung wurden Phenothiazin-Polymere als Elektrodenmaterialien in Lithium-Batteriezellen eingesetzt. Die verwendeten Polymere wiesen gute Kapazitätswerte von circa 50-90 Ah/kg sowie schnelle Aufladezeiten in der Batteriezelle auf. Besonders die Aufladezeiten sind 5-10 mal höher als konventionelle Lithium-Batterien. Im Hinblick auf Anzahl der Lade- und Entladezyklen, erzielten die Polymere gute Werte in den Langzeit-Stabilitätstests. Insgesamt überstehen die Polymere 500 Ladezyklen mit geringen Veränderungen der Anfangswerte bezüglich Ladezeiten und -kapazitäten. Die Langzeit-Stabilität hängt unmittelbar mit der Radikalstabilität zusammen. Eine Stabilisierung der Radikalkationen gelang durch die Verlängerung der Seitenkette am Stickstoffatom des Phenothiazins und der Polymerhauptkette. Eine derartige Alkyl-Substitution erhöht die Radikalstabilität durch verstärkte Wechselwirkung mit dem aromatischen Ring und verbessert somit die Batterieleistung hinsichtlich der Stabilität gegenüber Lade- und Entladezyklen. rnrnDes Weiteren wurde die praktische Anwendung von bistabilen Phenothiazin-Polymeren als Speichermedium für hohe Datendichten untersucht. Dazu wurden dünne Filme des Polymers auf leitfähigen Substraten elektrochemisch oxidiert. Die elektrochemische Oxidation erfolgte mittels Rasterkraftmikroskopie in Kombination mit leitfähigen Mikroskopspitzen. Mittels dieser Technik gelang es, die Oberfläche des Polymers im nanoskaligen Bereich zu oxidieren und somit die lokale Leitfähigkeit zu verändern. Damit konnten unterschiedlich große Muster lithographisch beschrieben und aufgrund der Veränderung ihrer Leitfähigkeit detektiert werden. Der Schreibprozess führte nur zu einer Veränderung der lokalen Leitfähigkeit ohne die topographische Beschaffenheit des Polymerfilms zu beeinflussen. Außerdem erwiesen sich die Muster als besonders stabil sowohl mechanisch als auch über die Zeit.rnrnZum Schluss wurden neue Synthesestrategien entwickelt um mechanisch stabile als auch redox-funktionale Oberflächen zu produzieren. Mit Hilfe der oberflächen-initiierten Atomtransfer-Radikalpolymerisation wurden gepfropfte Polymerbürsten mit redox-funktionalen Phenothiazin-Seitenketten hergestellt und mittels Röntgenmethoden und Rasterkraftmikroskopie analysiert. Eine der Synthesestrategien geht von gepfropften Aktivesterbürsten aus, die anschließend in einem nachfolgenden Schritt mit redox-funktionalen Gruppen modifiziert werden können. Diese Vorgehensweise ist besonders vielversprechend und erlaubt es unterschiedliche funktionelle Gruppen an den Aktivesterbürsten zu verankern. Damit können durch Verwendung von vernetzenden Gruppen neben den Redoxeigenschaften, die mechanische Stabilität solcher Polymerfilme optimiert werden. rn rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coniato negli anni‘90 il termine indica lo scavare tra i dati con chiara metafora del gold mining, ossia la ricerca dell’oro. Oggi è sinonimo di ricerca di informazione in vasti database, ed enfatizza il processo di analisi all’interno dei dati in alternativa all’uso di specifici metodi di analisi. Il data mining è una serie di metodi e tecniche usate per esplorare e analizzare grandi set di dati, in modo da trovare alcune regole sconosciute o nascoste, associazioni o tendenze.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La tesi da me svolta durante questi ultimi sei mesi è stata sviluppata presso i laboratori di ricerca di IMA S.p.a.. IMA (Industria Macchine Automatiche) è una azienda italiana che naque nel 1961 a Bologna ed oggi riveste il ruolo di leader mondiale nella produzione di macchine automatiche per il packaging di medicinali. Vorrei subito mettere in luce che in tale contesto applicativo l’utilizzo di algoritmi di data-mining risulta essere ostico a causa dei due ambienti in cui mi trovo. Il primo è quello delle macchine automatiche che operano con sistemi in tempo reale dato che non presentano a pieno le risorse di cui necessitano tali algoritmi. Il secondo è relativo alla produzione di farmaci in quanto vige una normativa internazionale molto restrittiva che impone il tracciamento di tutti gli eventi trascorsi durante l’impacchettamento ma che non permette la visione al mondo esterno di questi dati sensibili. Emerge immediatamente l’interesse nell’utilizzo di tali informazioni che potrebbero far affiorare degli eventi riconducibili a un problema della macchina o a un qualche tipo di errore al fine di migliorare l’efficacia e l’efficienza dei prodotti IMA. Lo sforzo maggiore per riuscire ad ideare una strategia applicativa è stata nella comprensione ed interpretazione dei messaggi relativi agli aspetti software. Essendo i dati molti, chiusi, e le macchine con scarse risorse per poter applicare a dovere gli algoritmi di data mining ho provveduto ad adottare diversi approcci in diversi contesti applicativi: • Sistema di identificazione automatica di errore al fine di aumentare di diminuire i tempi di correzione di essi. • Modifica di un algoritmo di letteratura per la caratterizzazione della macchina. La trattazione è così strutturata: • Capitolo 1: descrive la macchina automatica IMA Adapta della quale ci sono stati forniti i vari file di log. Essendo lei l’oggetto di analisi per questo lavoro verranno anche riportati quali sono i flussi di informazioni che essa genera. • Capitolo 2: verranno riportati degli screenshoot dei dati in mio possesso al fine di, tramite un’analisi esplorativa, interpretarli e produrre una formulazione di idee/proposte applicabili agli algoritmi di Machine Learning noti in letteratura. • Capitolo 3 (identificazione di errore): in questo capitolo vengono riportati i contesti applicativi da me progettati al fine di implementare una infrastruttura che possa soddisfare il requisito, titolo di questo capitolo. • Capitolo 4 (caratterizzazione della macchina): definirò l’algoritmo utilizzato, FP-Growth, e mostrerò le modifiche effettuate al fine di poterlo impiegare all’interno di macchine automatiche rispettando i limiti stringenti di: tempo di cpu, memoria, operazioni di I/O e soprattutto la non possibilità di aver a disposizione l’intero dataset ma solamente delle sottoporzioni. Inoltre verranno generati dei DataSet per il testing di dell’algoritmo FP-Growth modificato.