855 resultados para 010104 Combinatorics and Discrete Mathematics (excl. Physical Combinatorics)
Resumo:
Results from elasto-plastic numerical simulations of jointed rocks using both the equivalent continuum and discrete continuum approaches are presented, and are compared with experimental measurements. Initially triaxial compression tests on different types of rocks with wide variation in the uniaxial compressive strength are simulated using both the approaches and the results are compared. The applicability and relative merits and limitations of both the approaches for the simulation of jointed rocks are discussed. It is observed that both the approaches are reasonably good in predicting the real response. However, the equivalent continuum approach has predicted somewhat higher stiffness values at low strains. Considering the modelling effort involved in case of discrete continuum approach, for problems with complex geometry, it is suggested that a proper equivalent continuum model can be used, without compromising much on the accuracy of the results. Then the numerical analysis of a tunnel in Japan is taken up using the continuum approach. The deformations predicted are compared well against the field measurements and the predictions from discontinuum analysis. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Notched three point bend (TPB) specimens made with plain concrete and cement mortar were tested under crack mouth opening displacement (CMOD) control at a rate of 0.0004 mm/s and simultaneously acoustic emissions (AE) released were recorded during the experiments. Amplitude distribution analysis of AE released during concrete was carried out to study the development of fracture process in concrete and mortar specimens. The slope of the log-linear frequency-amplitude distribution of AE is known as the AE based b-value. The AE based b-value was computed in terms of physical process of time varying applied load using cumulative frequency distribution (Gutenberg-Richter relationship) and discrete frequency distribution (Aki's method) of AE released during concrete fracture. AE characteristics of plain concrete and cement mortar were studied and discussed and it was observed that the AE based b-value analysis serves as a tool to identify the damage in concrete structural members. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
A fully discrete C-0 interior penalty finite element method is proposed and analyzed for the Extended Fisher-Kolmogorov (EFK) equation u(t) + gamma Delta(2)u - Delta u + u(3) - u = 0 with appropriate initial and boundary conditions, where gamma is a positive constant. We derive a regularity estimate for the solution u of the EFK equation that is explicit in gamma and as a consequence we derive a priori error estimates that are robust in gamma. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
We introduce the class Sigma(k)(d) of k-stellated (combinatorial) spheres of dimension d (0 <= k <= d + 1) and compare and contrast it with the class S-k(d) (0 <= k <= d) of k-stacked homology d-spheres. We have E-1(d) = S-1(d), and Sigma(k)(d) subset of S-k(d) ford >= 2k-1. However, for each k >= 2 there are k-stacked spheres which are not k-stellated. For d <= 2k - 2, the existence of k-stellated spheres which are not k-stacked remains an open question. We also consider the class W-k(d) (and K-k(d)) of simplicial complexes all whose vertex-links belong to Sigma(k)(d - 1) (respectively, S-k(d - 1)). Thus, W-k(d) subset of K-k(d) for d >= 2k, while W-1(d) = K-1(d). Let (K) over bar (k)(d) denote the class of d-dimensional complexes all whose vertex-links are k-stacked balls. We show that for d >= 2k + 2, there is a natural bijection M -> (M) over bar from K-k(d) onto (K) over bar (k)(d + 1) which is the inverse to the boundary map partial derivative: (K) over bar (k)(d + 1) -> (K) over bar (k)(d). Finally, we complement the tightness results of our recent paper, Bagchi and Datta (2013) 5], by showing that, for any field F, an F-orientable (k + 1)-neighbourly member of W-k(2k + 1) is F-tight if and only if it is k-stacked.
Resumo:
This paper presents a second order sliding mode observer (SOSMO) design for discrete time uncertain linear multi-output system. The design procedure is effective for both matched and unmatched bounded uncertainties and/or disturbances. A second order sliding function and corresponding sliding manifold for discrete time system are defined similar to the lines of continuous time counterpart. A boundary layer concept is employed to avoid switching across the defined sliding manifold and the sliding trajectory is confined to a boundary layer once it converges to it. The condition for existence of convergent quasi-sliding mode (QSM) is derived. The observer estimation errors satisfying given stability conditions converge to an ultimate finite bound (within the specified boundary layer) with thickness O(T-2) where T is the sampling period. A relation between sliding mode gain and boundary layer is established for the existence of second order discrete sliding motion. The design strategy is very simple to apply and is demonstrated for three examples with different class of disturbances (matched and unmatched) to show the effectiveness of the design. Simulation results to show the robustness with respect to the measurement noise are given for SOSMO and the performance is compared with pseudo-linear Kalman filter (PLKF). (C) 2013 Published by Elsevier Ltd. on behalf of The Franklin Institute
Resumo:
The ambiguous behavior of metal-graphene interface has been addressed in this paper using density functional theory and nonequilibrium Green's function formalism. For the first time, the fundamental chemistry of metal-graphene interface, in particular role of sp-hybridized and sp(2)-hybridized carbon atoms, has been emphasized and discussed in detail in this paper. It was discovered that the sp-hybridized sites at the edge of a graphene monolayer contribute to 40% of current conduction when compared with sp(2)-hybridized atom sites in the graphene-metal overlap region. Moreover, we highlighted the insignificance of an additional metal layer, i.e., sandwiched contact, due to lacking sp-hybridized carbon sites. A fundamental way of defining the contact resistance, while keeping chemical bonding in mind, has been proposed. The bonding insight has been further used to propose the novel ways of interfacing metal with graphene, which results in a 40% reduction in contact resistance.
Resumo:
The inverted pendulum is a popular model for describing bipedal dynamic walking. The operating point of the walker can be specified by the combination of initial mid-stance velocity (v(0)) and step angle (phi(m)) chosen for a given walk. In this paper, using basic mechanics, a framework of physical constraints that limit the choice of operating points is proposed. The constraint lines thus obtained delimit the allowable region of operation of the walker in the v(0)-phi(m) plane. A given average forward velocity v(x,) (avg) can be achieved by several combinations of v(0) and phi(m). Only one of these combinations results in the minimum mechanical power consumption and can be considered the optimum operating point for the given v(x, avg). This paper proposes a method for obtaining this optimal operating point based on tangency of the power and velocity contours. Putting together all such operating points for various v(x, avg,) a family of optimum operating points, called the optimal locus, is obtained. For the energy loss and internal energy models chosen, the optimal locus obtained has a largely constant step angle with increasing speed but tapers off at non-dimensional speeds close to unity.
Resumo:
In this work, we study the well-known r-DIMENSIONAL k-MATCHING ((r, k)-DM), and r-SET k-PACKING ((r, k)-SP) problems. Given a universe U := U-1 ... U-r and an r-uniform family F subset of U-1 x ... x U-r, the (r, k)-DM problem asks if F admits a collection of k mutually disjoint sets. Given a universe U and an r-uniform family F subset of 2(U), the (r, k)-SP problem asks if F admits a collection of k mutually disjoint sets. We employ techniques based on dynamic programming and representative families. This leads to a deterministic algorithm with running time O(2.851((r-1)k) .vertical bar F vertical bar. n log(2)n . logW) for the weighted version of (r, k)-DM, where W is the maximum weight in the input, and a deterministic algorithm with running time O(2.851((r-0.5501)k).vertical bar F vertical bar.n log(2) n . logW) for the weighted version of (r, k)-SP. Thus, we significantly improve the previous best known deterministic running times for (r, k)-DM and (r, k)-SP and the previous best known running times for their weighted versions. We rely on structural properties of (r, k)-DM and (r, k)-SP to develop algorithms that are faster than those that can be obtained by a standard use of representative sets. Incorporating the principles of iterative expansion, we obtain a better algorithm for (3, k)-DM, running in time O(2.004(3k).vertical bar F vertical bar . n log(2)n). We believe that this algorithm demonstrates an interesting application of representative families in conjunction with more traditional techniques. Furthermore, we present kernels of size O(e(r)r(k-1)(r) logW) for the weighted versions of (r, k)-DM and (r, k)-SP, improving the previous best known kernels of size O(r!r(k-1)(r) logW) for these problems.
Resumo:
Methane hydrate, which is usually found under deep seabed or permafrost zones, is a potential energy resource for future years. Depressurization of horizontal wells bored in methane hydrate layer is considered as one possible method for hydrate dissociation and methane extraction from the hosting soil. Since hydrate is likely to behave as a bonding material to sandy soils, supported well construction is necessary to avoid well-collapse due to the loss of the apparent cohesion during depressurization. This paper describes both physical and numerical modeling of such horizontal support wells. The experimental part involves depressurization of small well models in a large pressure cell, while the numerical part simulates the corresponding problem. While the experiment models simulate only gas saturated initial conditions, the numerical analysis simulates both gas-saturated and more realistic water-saturated conditions based on effective stress coupled flow-deformation formulation of these three phases. © 2006 Taylor & Francis Group.
Resumo:
Algorithmic DNA tiles systems are fascinating. From a theoretical perspective, they can result in simple systems that assemble themselves into beautiful, complex structures through fundamental interactions and logical rules. As an experimental technique, they provide a promising method for programmably assembling complex, precise crystals that can grow to considerable size while retaining nanoscale resolution. In the journey from theoretical abstractions to experimental demonstrations, however, lie numerous challenges and complications.
In this thesis, to examine these challenges, we consider the physical principles behind DNA tile self-assembly. We survey recent progress in experimental algorithmic self-assembly, and explain the simple physical models behind this progress. Using direct observation of individual tile attachments and detachments with an atomic force microscope, we test some of the fundamental assumptions of the widely-used kinetic Tile Assembly Model, obtaining results that fit the model to within error. We then depart from the simplest form of that model, examining the effects of DNA sticky end sequence energetics on tile system behavior. We develop theoretical models, sequence assignment algorithms, and a software package, StickyDesign, for sticky end sequence design.
As a demonstration of a specific tile system, we design a binary counting ribbon that can accurately count from a programmable starting value and stop growing after overflowing, resulting in a single system that can construct ribbons of precise and programmable length. In the process of designing the system, we explain numerous considerations that provide insight into more general tile system design, particularly with regards to tile concentrations, facet nucleation, the construction of finite assemblies, and design beyond the abstract Tile Assembly Model.
Finally, we present our crystals that count: experimental results with our binary counting system that represent a significant improvement in the accuracy of experimental algorithmic self-assembly, including crystals that count perfectly with 5 bits from 0 to 31. We show some preliminary experimental results on the construction of our capping system to stop growth after counters overflow, and offer some speculation on potential future directions of the field.