903 resultados para Éclairage architectural


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Actions Towards Sustainable Outcomes Environmental Issues/Principal Impacts The increasing urbanisation of cities brings with it several detrimental consequences, such as: • Significant energy use for heating and cooling many more buildings has led to urban heat islands and increased greenhouse gas emissions. • Increased amount of hard surfaces, which not only contributes to higher temperatures in cities, but also to increased stormwater runoff. • Degraded air quality and noise. • Health and general well-being of people is frequently compromised, by inadequate indoor air quality. • Reduced urban biodiversity. Basic Strategies In many design situations, boundaries and constraints limit the application of cutting EDGe actions. In these circumstances, designers should at least consider the following: • Living walls are an emerging technology, and many Australian examples function more as internal feature walls. However,as understanding of the benefits and construction of living walls develops this technology could be part of an exterior facade that enhances a building’s thermal performance. • Living walls should be designed to function with an irrigation system using non-potable water. Cutting EDGe Strategies • Living walls can be part of a design strategy that effectively improves the thermal performance of a building, thereby contributing to lower energy use and greenhouse gas emissions. • Including living walls in the initial stages of design would provide greater flexibility to the design, especially of the facade, structural supports, mechanical ventilation and watering systems, thus lowering costs. • Designing a building with an early understanding of living walls can greatly reduce maintenance costs. • Including plant species and planting media that would be able to remove air impurities could contribute to improved indoor air quality, workplace productivity and well-being. Synergies and References • Living walls are a key research topic at the Centre for Subtropical Design, Queensland University of Technology: http://www.subtropicaldesign.bee.qut.edu.au • BEDP Environment Design Guide: DES 53: Roof and Facade Gardens • BEDP Environment Design Guide: GEN 4: Positive Development – Designing for Net Positive Impacts (see green scaffolding and green space frame walls). • Green Roofs Australia: www.greenroofs.wordpress.com • Green Roofs for Healthy Cities USA: www.greenroofs.org

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As Brisbane grows, it is rapidly becoming akin to any other city in the world with its typical stark grey concrete buildings rather than being characterized by its subtropical element of abundant green vegetation. Living Walls can play a vital role in restoring the loss of this distinct local element of a subtropical city. This paper will start by giving an overview of the traditional methods of greening subtropical cities with the use of urban parks and street trees. Then, by examining a recent heat imaging map of Brisbane, the effect of green cover with the built environment will be shown. With this information from a macro level, this paper will proceed to examine a typical urban block within the Central Business District (CBD) to demonstrate urban densification in relation to greenery in the city. Then, this paper will introduce the new technology where Living Walls have the untapped potential of effectively greening a city where land is scarce and given over to high density development. Living Walls incorporated into building design does not only enhance the subtropical lifestyle that is being lost in modern cities but is also an effective means for addressing climate change. This paper will serve as a preliminary investigation into the effects of incorporating Living Walls into cities. By growing a Living Wall onto buildings, we can be part of an effective design solution for countering global warming and at the same time, Living Walls can return local character to subtropical cities, thereby greening the city as well.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper discusses the preliminary findings of an ongoing research project aimed at developing a technological, operational and strategic analysis of adopting BIM in AEC/FM (Architecture-Engineering-Construction/Facility Management) industry as a collaboration tool. Outcomes of the project will provide specifications and guidelines as well as establish industry standards for implementing BIM in practice. This research primarily focuses on BIM model servers as a collaboration platform, and hence the guidelines are aimed at enhancing collaboration capabilities. This paper reports on the findings from: (1) a critical review of latest BIM literature and commercial applications, and (2) workshops with focus groups on changing work-practice, role of technology, current perception and expectations of BIM. Layout for case studies being undertaken is presented. These findings provide a base to develop comprehensive software specifications and national guidelines for BIM with particular emphasis on BIM model servers as collaboration platforms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper will examine the intersection of design research and problem‐based teaching through the process and outcomes of a four year long ARC funded research project: the Emerging Futures Project. Sustainability is central to the project; in its overall content as well as in the broad aim of determining better outcomes for urban consolidation.   

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Building integrated living systems (BILS), such as green roofs and living walls, could mitigate many of the challenges presented by climate change and biodiversity protection. However, few if any such systems have been constructed, and current tools for evaluating them are limited, especially under Australian subtropical conditions. BILS are difficult to assess, because living systems interact with complex, changing and site-specific social and environmental conditions. Our past research in design for eco-services has confirmed the need for better means of assessing the ecological values of BILS - let alone better models for assessing their thermal and hydrological performance. To address this problem, a research project is being developed jointly by researchers at the Central Queensland University (CQ University) and the Queensland University of Technology (QUT), along with industry collaborators. A mathematical model under development at CQ University will be applied and tested to determine its potential for predicting their complex, dynamic behaviour in different contexts. However, the paper focuses on the work at QUT. The QUT school of design is generating designs for living walls and roofs that provide a range of ecosystem goods and services, or ‘eco-services’, for a variety of micro-climates and functional contexts. The research at QUT aims to develop appropriate designs, virtual prototypes and quantitative methods for assessing the potential multiple benefits of BILS in subtropical climates. It is anticipated that the CQ University model for predicting thermal behaviour of living systems will provide a platform for the integration of ecological criteria and indicators. QUT will also explore means to predict and measure the value of eco-services provided by the systems, which is still largely uncharted territory. This research is ultimately intended to facilitate the eco-retrofitting of cities to increase natural capital and urban resource security - an essential component of sustainability. The talk will present the latest range of multifunctional, eco-productive living walls, roofs and urban space frames and their eco-services.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As all environmental problems are caused by human systems of design, sustainability can be seen as a design problem. Given the massive energy and material flows through the built environment, sustainability simply cannot be achieved without the re-design of our urban areas. ‘Eco-retrofitting’, as used here, means modifying buildings and/or urban areas to create net positive social and environmental impacts – both on site and off site. While this has probably not been achieved anywhere as yet, myriad but untapped eco-solutions are already available which could be up-scaled to the urban level. It is now well established that eco-retrofitting buildings and cities with appropriate design technology can pay for itself through lower health costs, productivity increases and resource savings. Good design would also mean happier human and ecological communities at a much lower cost over time. In fact, good design could increase life quality and the life support services of nature while creating sustainable‘economic’growth. The impediments are largely institutional and intellectual, which can be encapsulated in the term ‘managerial’. There are, however, also systems design solutions to the managerial obstacles that seem to be stalling the transition to sustainable systems designs. Given the sustainability imperative, then, why is the adoption of better management systems so slow? The oral presentation will show examples of ways in which built environment design can create environments that not only reduce the ongoing damage of past design, but could theoretically generate net positive social and ecological outcomes over their life cycle. These illustrations show that eco-retrofitting could cost society less than doing nothing - especially given the ongoing renovations of buildings - but for managerial hurdles. The paper outlines on how traditional managerial approaches stand in the way of ‘design for ecosystem services’, and list some management solutions that have long been identified, but are not yet widely adopted. Given the pervasive nature of these impediments and their alternatives, they are presented by way of examples. A sampling of eco-retrofitting solutions are also listed to show that ecoretrofitting is a win-win-win solution that stands ready to be implemented by people having management skills and/or positions of influence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

What happens when patterns become all pervasive? When pattern contagiously corrupts and saturates adjacent objects, artefacts and surfaces; blurring internal and external environment and dissolving any single point of perspective or static conception of space. Mark Taylor ruminates on the possibilities of relentless patterning in interior space in both a historic and a contemporary context.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Brisbane's sub-tropical climate, vegetation and urban history as a British settlement, endow the region with many characteristics that are familiar in KwaZulu-Natal. Brisbane settlement, firstly as a penal conlony to accommodate the hardiest criminals dispatched from Sydney, was established in 1825 on a wide river, several kilometers upstream from Moreton Bay with the Pacific Ocean beyond. The penal colony was short lived and was soon opened up to free settlement in 1842. The growth of the fledgling town was characterized by brick warehouse and service buildings to the port that was established on its riverbanks, resembling those of the old Point Road area in Durban. Government and administration buildings heralded Brisbane as the captial city of the State of Queensland, annexed from New South Wales in 1859. Morphological studies reveal that Brisbane had reached its first zenith around 1930 as a commerical city of four and five storey buildings. The urban form remained stagnant until the post-1960's building boom and the developments from this period on, consolidated land amalgamations largely ignoring the urban characteristics of the established city. Public space was poorly observed, resulting in a city that had turned its back on the river. It is only in recent times that the currency of good urban design, under the custodial direction of the City Council, has fostered a re-engagemed urban realm that, enabled by the recent building boom, has delivered high quality urban environments

Relevância:

10.00% 10.00%

Publicador:

Resumo:

I have been an academic since joining the University of Natal in 1998 and, following a period as a visiting lecturer in Brisbane in 2001, I joined the staff at QUT on an ongoing basis in 2003. I was appointed as Architecture Co-ordinator in 2006, and this role involves the leadership of the architectur discipline of 17 full time academics. I am currently enrolled in a PhD course in the field of urban morphology. This research proposes a theory on the relevance of mapping the evolutionary aspects of historical urban form to develop a measure for evaluating architecural elements and deriving parameters for new buildings. My participation in a QUT design team contributed to a recent successful invited competition bid for an Urban Transit Centre in Hangzhou, China. The Centre will include retail, business, entertainment, residential and service components at the heart of the Binjiang district on the 11.5ha core area with 32ha surrounding urban design precinct. The project has received the approval to commence and is to be implemented over the next three years!

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When I arrived in Queensland's capital in 1996, Brisbane was commonly referred to as an 'overgrown country town'. This might have been an acceptable description in the 1990s, but it cannot be applied any longer. Brisbane, affectionaly referred to by the locals as Bris-Vegas, has now come of age. Following Sydney and Melbourne, Brisbane is the third most populous city in Australia with a population of approximately two million. Interestingly, the 2006 Census showed that 22 per cent of Brisbane's population was born overseas, the three main countries of birth being the UK, New Zealand and South Africa. Brisbane City is centred on its most dominant environmental element, the Brisbane River, which effectively carves Brisbane into two areas - the Northside and the Southside. The 2001 addition of Cox Rayner's Goodwill Pedestrian and Cycle Bridge signified Brisbane's acceptance and affectionate embrace of its River resulting in a long overdue linage between Brisbane's North and South. It connects the City's key precincts - the Northside CBD through Queensland University of Technology (QUT), across Brisbane River, to the recreational precinct of the Southside Southbank Parklands. The Southside cultural precinct of Southbank is the home to Queensland's Art Gallery, Performing Arts Complex, State Library and Museum -each of which were designed by Brisbane Stalwart Architect Robin Gibson, in the 1970s and '80s. The CBD component of the Brisbane River is flanked by a number of Institutional Facilities, including the campuses of QUT, Griffith University and the Southbank Education and Training Precinct (SETP), which combine to form a cross-river educational precinct. The past decade has born witness to a city which has keenly supported emerging architects in addition to the more entrenched stalwarts of the profession, resulting in a youthful, relaxed and unpretentious sub-tropical city. Viva Bris-Vegas!

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose –The introduction of Building Information Model tools over the last 20 years is resulting in radical changes in the Architectural, Engineering and Construction industry. One of these changes concerns the use of Virtual Prototyping - an advanced technology integrating BIM with realistic graphical simulations. Construction Virtual Prototyping (CVP) has now been developed and implemented on ten real construction projects in Hong Kong in the past three years. This paper reports on a survey aimed at establishing the effects of adopting this new technology and obtaining recommendations for future development. Design/methodology/approach – A questionnaire survey was conducted in 2007 of 28 key participants involved in four major Hong Kong construction projects – these projects being chosen because the CVP approach was used in more than one stage in each project. In addition, several interviews were conducted with the project manager, planning manager and project engineer of an individual project. Findings –All the respondents and interviewees gave a positive response to the CVP approach, with the most useful software functions considered to be those relating to visualisation and communication. The CVP approach was thought to improve the collaboration efficiency of the main contractor and sub-contractors by approximately 30 percent, and with a concomitant 30 to 50 percent reduction in meeting time. The most important benefits of CPV in the construction planning stage are the improved accuracy of process planning and shorter planning times, while improved fieldwork instruction and reducing rework occur in the construction implementation stage. Although project teams are hesitant to attribute the use of CVP directly to any specific time savings, it was also acknowledged that the workload of project planners is decreased. Suggestions for further development of the approach include incorporation of automatic scheduling and advanced assembly study. Originality/value –Whilst the research, development and implementation of CVP is relatively new in the construction industry, it is clear from the applications and feedback to date that the approach provides considerable added value to the organisation and management of construction projects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The selection criteria for contractor pre-qualification are characterized by the co-existence of both quantitative and qualitative data. The qualitative data is non-linear, uncertain and imprecise. An ideal decision support system for contractor pre-qualification should have the ability of handling both quantitative and qualitative data, and of mapping the complicated nonlinear relationship of the selection criteria, such that rational and consistent decisions can be made. In this research paper, an artificial neural network model was developed to assist public clients identifying suitable contractors for tendering. The pre-qualification criteria (variables) were identified for the model. One hundred and twelve real pre-qualification cases were collected from civil engineering projects in Hong Kong, and eighty-eight hypothetical pre-qualification cases were also generated according to the “If-then” rules used by professionals in the pre-qualification process. The results of the analysis totally comply with current practice (public developers in Hong Kong). Each pre-qualification case consisted of input ratings for candidate contractors’ attributes and their corresponding pre-qualification decisions. The training of the neural network model was accomplished by using the developed program, in which a conjugate gradient descent algorithm was incorporated for improving the learning performance of the network. Cross-validation was applied to estimate the generalization errors based on the “re-sampling” of training pairs. The case studies show that the artificial neural network model is suitable for mapping the complicated nonlinear relationship between contractors’ attributes and their corresponding pre-qualification (disqualification) decisions. The artificial neural network model can be concluded as an ideal alternative for performing the contractor pre-qualification task.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The construction of reinforced concrete buildings with unreinforced infill is common practice even in seismically active country such as Bhutan, which is located in high seismic region of Eastern Himalaya. All buildings constructed prior 1998 were constructed without seismic provisions while those constructed after this period adopted seismic codes of neighbouring country, India. However, the codes have limited information on the design of infilled structures besides having differences in architectural requirements which may compound the structural problems. Although the influence of infill on the reinforced concrete framed structures is known, the present seismic codes do not consider it due to the lack of sufficient information. Time history analyses were performed to study the influence of infill on the performance of concrete framed structures. Important parameters were considered and the results presented in a manner that can be used by practitioners. The results show that the influence of infill on the structural performance is significant. The structural responses such as fundamental period, roof displacement, inter-storey drift ratio, stresses in infill wall and structural member forces of beams and column generally reduce, with incorporation of infill wall. The structures designed and constructed with or without seismic provision perform in a similar manner if the infills of high strength are used.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Osteoporosis is a disease characterized by low bone mass and micro-architectural deterioration of bone tissue, with a consequent increase in bone fragility and susceptibility to fracture. Osteoporosis affects over 200 million people worldwide, with an estimated 1.5 million fractures annually in the United States alone, and with attendant costs exceeding $10 billion dollars per annum. Osteoporosis reduces bone density through a series of structural changes to the honeycomb-like trabecular bone structure (micro-structure). The reduced bone density, coupled with the microstructural changes, results in significant loss of bone strength and increased fracture risk. Vertebral compression fractures are the most common type of osteoporotic fracture and are associated with pain, increased thoracic curvature, reduced mobility, and difficulty with self care. Surgical interventions, such as kyphoplasty or vertebroplasty, are used to treat osteoporotic vertebral fractures by restoring vertebral stability and alleviating pain. These minimally invasive procedures involve injecting bone cement into the fractured vertebrae. The techniques are still relatively new and while initial results are promising, with the procedures relieving pain in 70-95% of cases, medium-term investigations are now indicating an increased risk of adjacent level fracture following the procedure. With the aging population, understanding and treatment of osteoporosis is an increasingly important public health issue in developed Western countries. The aim of this study was to investigate the biomechanics of spinal osteoporosis and osteoporotic vertebral compression fractures by developing multi-scale computational, Finite Element (FE) models of both healthy and osteoporotic vertebral bodies. The multi-scale approach included the overall vertebral body anatomy, as well as a detailed representation of the internal trabecular microstructure. This novel, multi-scale approach overcame limitations of previous investigations by allowing simultaneous investigation of the mechanics of the trabecular micro-structure as well as overall vertebral body mechanics. The models were used to simulate the progression of osteoporosis, the effect of different loading conditions on vertebral strength and stiffness, and the effects of vertebroplasty on vertebral and trabecular mechanics. The model development process began with the development of an individual trabecular strut model using 3D beam elements, which was used as the building block for lattice-type, structural trabecular bone models, which were in turn incorporated into the vertebral body models. At each stage of model development, model predictions were compared to analytical solutions and in-vitro data from existing literature. The incremental process provided confidence in the predictions of each model before incorporation into the overall vertebral body model. The trabecular bone model, vertebral body model and vertebroplasty models were validated against in-vitro data from a series of compression tests performed using human cadaveric vertebral bodies. Firstly, trabecular bone samples were acquired and morphological parameters for each sample were measured using high resolution micro-computed tomography (CT). Apparent mechanical properties for each sample were then determined using uni-axial compression tests. Bone tissue properties were inversely determined using voxel-based FE models based on the micro-CT data. Specimen specific trabecular bone models were developed and the predicted apparent stiffness and strength were compared to the experimentally measured apparent stiffness and strength of the corresponding specimen. Following the trabecular specimen tests, a series of 12 whole cadaveric vertebrae were then divided into treated and non-treated groups and vertebroplasty performed on the specimens of the treated group. The vertebrae in both groups underwent clinical-CT scanning and destructive uniaxial compression testing. Specimen specific FE vertebral body models were developed and the predicted mechanical response compared to the experimentally measured responses. The validation process demonstrated that the multi-scale FE models comprising a lattice network of beam elements were able to accurately capture the failure mechanics of trabecular bone; and a trabecular core represented with beam elements enclosed in a layer of shell elements to represent the cortical shell was able to adequately represent the failure mechanics of intact vertebral bodies with varying degrees of osteoporosis. Following model development and validation, the models were used to investigate the effects of progressive osteoporosis on vertebral body mechanics and trabecular bone mechanics. These simulations showed that overall failure of the osteoporotic vertebral body is initiated by failure of the trabecular core, and the failure mechanism of the trabeculae varies with the progression of osteoporosis; from tissue yield in healthy trabecular bone, to failure due to instability (buckling) in osteoporotic bone with its thinner trabecular struts. The mechanical response of the vertebral body under load is highly dependent on the ability of the endplates to deform to transmit the load to the underlying trabecular bone. The ability of the endplate to evenly transfer the load through the core diminishes with osteoporosis. Investigation into the effect of different loading conditions on the vertebral body found that, because the trabecular bone structural changes which occur in osteoporosis result in a structure that is highly aligned with the loading direction, the vertebral body is consequently less able to withstand non-uniform loading states such as occurs in forward flexion. Changes in vertebral body loading due to disc degeneration were simulated, but proved to have little effect on osteoporotic vertebra mechanics. Conversely, differences in vertebral body loading between simulated invivo (uniform endplate pressure) and in-vitro conditions (where the vertebral endplates are rigidly cemented) had a dramatic effect on the predicted vertebral mechanics. This investigation suggested that in-vitro loading using bone cement potting of both endplates has major limitations in its ability to represent vertebral body mechanics in-vivo. And lastly, FE investigation into the biomechanical effect of vertebroplasty was performed. The results of this investigation demonstrated that the effect of vertebroplasty on overall vertebra mechanics is strongly governed by the cement distribution achieved within the trabecular core. In agreement with a recent study, the models predicted that vertebroplasty cement distributions which do not form one continuous mass which contacts both endplates have little effect on vertebral body stiffness or strength. In summary, this work presents the development of a novel, multi-scale Finite Element model of the osteoporotic vertebral body, which provides a powerful new tool for investigating the mechanics of osteoporotic vertebral compression fractures at the trabecular bone micro-structural level, and at the vertebral body level.

Relevância:

10.00% 10.00%

Publicador: