815 resultados para ,Wireless Mobile Network.
Resumo:
Traditional Time Division Multiple Access (TDMA) protocol provides deterministic periodic collision free data transmissions. However, TDMA lacks flexibility and exhibits low efficiency in dynamic environments such as wireless LANs. On the other hand contention-based MAC protocols such as the IEEE 802.11 DCF are adaptive to network dynamics but are generally inefficient in heavily loaded or large networks. To take advantage of the both types of protocols, a D-CVDMA protocol is proposed. It is based on the k-round elimination contention (k-EC) scheme, which provides fast contention resolution for Wireless LANs. D-CVDMA uses a contention mechanism to achieve TDMA-like collision-free data transmissions, which does not need to reserve time slots for forthcoming transmissions. These features make the D-CVDMA robust and adaptive to network dynamics such as node leaving and joining, changes in packet size and arrival rate, which in turn make it suitable for the delivery of hybrid traffic including multimedia and data content. Analyses and simulations demonstrate that D-CVDMA outperforms the IEEE 802.11 DCF and k-EC in terms of network throughput, delay, jitter, and fairness.
Resumo:
In this paper, the performance of the network coded amplify-forward cooperative protocol is studied. The use of network coding can suppress the bandwidth resource consumed by relay transmission, and hence increase the spectral efficiency of cooperative diversity. A distributed strategy of relay selection is applied to the cooperative scheme, which can reduce system overhead and also facilitate the development of the explicit expressions of information metrics, such as outage probability and ergodic capacity. Both analytical and numerical results demonstrate that the proposed protocol can achieve large ergodic capacity and full diversity gain simultaneously.
Resumo:
Novel V-band substrate integrated waveguide (SIW) filters have been presented. Design procedures for the filters synthesis and mechanisms providing quasi-elliptic response have been explained. The insertion loss of the filters has been measured below 2 dB with microstrip-to-SIW transitions being included.
Resumo:
The authors consider a point percolation lattice representation of a large-scale wireless relay sensor network (WRSN) deployed in a cluttered environment. Each relay sensor corresponds to a grid point in the random lattice and the signal sent by the source is modelled as an ensemble of photons that spread in the space, which may 'hit' other sensors and are 'scattered' around. At each hit, the relay node forwards the received signal to its nearest neighbour through direction-selective relaying. The authors first derive the distribution that a relay path reaches a prescribed location after undergoing certain number of hops. Subsequently, a closed-form expression of the average received signal strength (RSS) at the destination can be computed as the summation of all signal echoes' energy. Finally, the effect of the anomalous diffusion exponent ß on the mean RSS in a WRSN is studied, for which it is found that the RSS scaling exponent e is given by (3ß-1)/ß. The results would provide useful insight into the design and deployment of large-scale WRSNs in future. © 2011 The Institution of Engineering and Technology.
Resumo:
To optimize the performance of wireless networks, one needs to consider the impact of key factors such as interference from hidden nodes, the capture effect, the network density and network conditions (saturated versus non-saturated). In this research, our goal is to quantify the impact of these factors and to propose effective mechanisms and algorithms for throughput guarantees in multi-hop wireless networks. For this purpose, we have developed a model that takes into account all these key factors, based on which an admission control algorithm and an end-to-end available bandwidth estimation algorithm are proposed. Given the necessary network information and traffic demands as inputs, these algorithms are able to provide predictive control via an iterative approach. Evaluations using analytical comparison with simulations as well as existing research show that the proposed model and algorithms are accurate and effective.