480 resultados para xylose isomerase


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sulfated polysaccharides (PS) are biomolecules with a great biotechnological potential. There are few data about PS from high plants. In addition, pharmacological activities of PS from plants have not been carrying out. The aim of this work was extract PS from the angiosperm Halodule wrightii and study their anticoagulant and antioxidant activities. Histological analysis showed the presence of the PS manly in the roots. A polysaccharide-rich extract was obtained from H. wrightii by proteolysis followed by methanol and TCA precipitation. Chemical, infra-red analysis and agarose gel electrophoresis in 1.3 diaminopropane acetate buffer confirmed the presence of sulfated polysaccharides made by glucose, galactose, xylose and sulfate residues in the proportion 1: 0,9: 1: 1. In addition polyacrilamide electrophoresis have shown that extract is mainly compose by 11kDa sulfated polysaccharides. Pharmacological analysis have shown total antioxidant capacity (CAT) that resulted in 15,21 μg for equivalent of ascorbic acid, scavenging activity of the DPPH radical with 41,36 % of scavenging, activity of reducing power with the maximum of 0,290 nm (50 % of vitamin C activity) and scavenging activity superoxide radical (O2-) with a maximum of 32,23 %. Chelating activity of metal less than 4% and scavenging activity of the radical hydroxyl (OH-) less than 2%. Time of activated partial tromboplastin (aPTT) doubling the time of coagulation from 20μg of and protrombin time (PT) was not present. The data indicate that PS from Halodule wrightii could be considered for future applications in medicine, food production or cosmetic industry

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sulfated polysaccharides (PS) are biomolecules with a great biotechnological potential. There are few data about PS from high plants. In addition, pharmacological activities of PS from plants have not been carrying out. The aim of this work was extract PS from the angiosperm Halodule wrightii and study their anticoagulant and antioxidant activities. Histological analysis showed the presence of the PS manly in the roots. A polysaccharide-rich extract was obtained from H. wrightii by proteolysis followed by methanol and TCA precipitation. Chemical, infra-red analysis and agarose gel electrophoresis in 1.3 diaminopropane acetate buffer confirmed the presence of sulfated polysaccharides made by glucose, galactose, xylose and sulfate residues in the proportion 1: 0,9: 1: 1. In addition polyacrilamide electrophoresis have shown that extract is mainly compose by 11kDa sulfated polysaccharides. Pharmacological analysis have shown total antioxidant capacity (CAT) that resulted in 15,21 μg for equivalent of ascorbic acid, scavenging activity of the DPPH radical with 41,36 % of scavenging, activity of reducing power with the maximum of 0,290 nm (50 % of vitamin C activity) and scavenging activity superoxide radical (O2-) with a maximum of 32,23 %. Chelating activity of metal less than 4% and scavenging activity of the radical hydroxyl (OH-) less than 2%. Time of activated partial tromboplastin (aPTT) doubling the time of coagulation from 20μg of and protrombin time (PT) was not present. The data indicate that PS from Halodule wrightii could be considered for future applications in medicine, food production or cosmetic industry

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years, sulfated polysaccharides from marine algae have emerged as an important class of natural biopolymers with potential application in human and veterinary health care, while taking advantage of the absence of potential risk of contamination by animal viruses. Among these, fucans isolated from the cell walls of marine brown alga have been study due to their anticoagulant, antithrombotic, anti-inflammatory and antiviral activities. These biological effects of fucans have been found to depend on the degree of sulfation and molecular size of the polysaccharide chains. In the present study, we examined structural features of a fucan extracted from brown alga Dictyota menstrualis and its effect on the leukocyte migration to the peritoneum. The sulfated polysaccharides were extracted from the brown seaweed by proteolytic digestion, followed by sequential acetone precipitation producing 5 fractions. Gel lectrophoresis using 0.05 M 1,3-diaminopropane-acetate buffer, pH 9.0, stained with 0.1% toluidine blue, showed the presence of sulfated polysaccharides in all fractions. The chemical analyses demonstrated that all fractions are composed mainly of fucose, xylose, galactose, uronic acid, and sulfate. Electrophoresis in agarose gel in three different buffers demonstrated that the fraction 2.0v have only one population of fucan. This compound was purify by exclusion molecular. It has shown composition of fucose, xilose, sulfate and uronic acid in molar ration of 1.0: 1.7: 1.1: 0.5 respectively. The effect of this heterofucan on the leukocyte migration was observed 6h after zymozan (mg/g) administration into the peritoneum. The heterofucan showed higher antimigratory activity, it decrease the migration of leukocyte in 83.77% to peritoneum. The results suggest that this fucan is a new antimigratory compound with potential pharmacological appications

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymers of mushroom cellular wall are recognized for presenting a lot of biological activities such as anti-inflammatory, antioxidant and anti-tumoral action. Polysaccharides from mushrooms of different molecular mass obtained mushrooms can activate leucocytes, stimulate fagocitic, citotoxic and antimicrobial activity including oxygen reactive species production. In this study were investigated chemical characteristics, in vitro antioxidant activity and anti-inflammatory action in an acute inflammation model of the polysaccharides extracted from Tylopilus ballouii. Results showed that were mainly extracted polysaccharides and that it primarily consisted of mannose and galactose with variable amounts of xylose and fucose. Infrared analysis showed a possible interation between this polysaccharides and proteins. In addition, molecular mass was about 140KDa. Antioxidant activity was tested by superoxide and hydroxyl radical scavenging assay, total antioxidant activity and lipid peroxidation assay. For superoxide and hydroxyl radical generation inhibition, polysaccharides have an IC50 of 2.36 and 0.36 mg/mL, respectively. Lipid peroxidation assay results showed that polysaccharides from Tylopilus ballouii present an IC50 of 3.42 mg/mL. Futhermore, anti-inflammatory assay showed that polysaccharides cause an paw edema decreasing in 32.8, 42 and 56% in 30, 50 and 70 mg/Kg dose, respectively. Thus, these results can indicate a possible use for these polysaccharides from Tylopilus ballouii as an anti-inflammatory and antioxidant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The corn cob is an agricultural by-product still little used, this in part due to the low knowledge of the biotechnological potential of their molecules. Xylan from corn cobs (XSM) is a polysaccharide present in greater quantity in the structure of plant and its biotechnology potential is little known. This study aimed to the extraction, chemical characterization and evaluation of biological activities of xylan from corn cobs. To this end, corncobs were cleaned, cut, dried and crushed, resulting in flour. This was subjected to a methodology that combines the use of alkaline conditions with waves of ultrasound. After methanol precipitation, centrifugation and drying was obtained a yield of 40% (g/g flour). Chemical analysis indicated a high percentage of polysaccharides in the sample (60%) and low contamination by protein (0.4%) and phenolic compounds (> 0.01%). Analysis of monosaccharide composition indicated the presence of xylose:glucose:arabinose:galactose:mannose:glucuronic acid in a molar ratio 50:20:15:10:2.5:2.5. The presence of xylan in the sample was confirmed by nuclear magnetic resonance (¹H and ¹³C) and infrared spectroscopy (IR). Tests were conducted to evaluate the antioxidant potential of XSM. This showed a total antioxidant capacity of 48.45 EAA/g sample. However, did not show scavenging activity of superoxide and hydroxyl radical and also reducing power. But, showing a high capacity chelating iron ions with 70% with about 2 mg/mL. The ability to XSM to influence cell proliferation in culture was also evaluated. This polymer did not influence the proliferation of normal fibroblast cells (3T3), however, decreased the rate of proliferation of tumor cells (HeLa) in a dose-dependent, reaching an inhibition of about 50% with a concentration around 2 mg/mL. Analyzing proteins related to cell death, by immunoblotting, XSM increases the amount of Bax, Bcl-2 decrease, increase cytochrome c and AIF, and reduce pro-caspase-3, indicating the induction of cell death induced apoptosis dependent and independent of caspase. XSM did not show anticoagulant activity in the PT test. However, the test of activated partial thromboplastin time (aPTT), XSM increased clotting time at about 5 times with 600 μg of sample compared with the negative control. The presence of sulfate on the XSM was discarded by agarose gel electrophoresis and IR. After carboxyl-reduction of XSM the anticoagulant activity decreased dramatically. The data of this study demonstrate that XSM has potential as antioxidant, antiproliferative and anticoagulant compound. Future studies to characterize these activities of XSM will help to increase knowledge about this molecule extracted from corn and allow their use in functional foods, pharmaceuticals and chemical industries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lectin obtained from the marine sponge Tedania ignis was purified and characterized by extraction of soluble proteins (crude extract) in 50mM Borax, pH 7.5. The purification procedure was carried out by crude extract precipitation with ammonium sulfate 30% (FI). The precipitated was resuspended in the same buffer and fractionated with acetone 1.0 volume (F1.0). A lectin was purified from this specific fraction by using an affinity chromatography Sepharose 6B. This lectin preferentially agglutinated human erythrocytes from B type previously treated with papain enzyme. The hemagglutinating activity lectin was dependent of divalent Mn2+ cation and was inhibited by the carbohydrates galactose, xylose and fructose. SDS-PAGE analysis indicated a molecular mass of the lectin around 45 kDa. This protein showed stability until 40°C for 1 h. Further, it showed activity between pH 2.5 and 11.5, with an enhanced activity at pH 7.5. Leishmania chagasi promastigotes stained with Coomassie brilliant blue R-250 were agglutinated by F1,0 and in the presence of galactose this interaction was abolished. These results show that this lectin could be implicated in defense procedures and it will can be used as biological tools in studies with this protozoon

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The screening for genes in metagenomic libraries from soil creates opportunities to explore the enormous genetic and metabolic diversity of microorganisms. Rivers are ecosystems with high biological diversity, but few were examined using the metagenomic approach. With this objective, a metagenomic library was constructed from DNA soil samples collected at three different points along the Jundiaí-river (Rio Grande do Norte-Brazil). The points sampled are from open area, rough terrain and with the direct incidence of sunlight. This library was analyzed functionally and based in sequence. For functional analysis Luria-Bertani solid medium (LB) with NaCl concentration varied from 0.17M to 0.85M was used for functional analysis. Positives clones resistant to hypersaline medium were obtained. The recombinant DNAs were extracted and transformed into Escherichia coli strain DH10B and survival curves were obtained for quantification of abiotic stress resistance. The sequences of clones were obtained and submitted to the BLASTX tool. Some clones were found to hypothetical proteins of microorganisms from both Archaea and Bacteria division. One of the clones showed a complete ORF with high similarity to glucose-6-phosphate isomerase which participates in the synthesis of glycerol pathway and serves as a compatible solute to balance the osmotic pressure inside and outside of cells. Subsequently, in order to identify genes encoding osmolytes or enzymes related halotolerance, environmental DNA samples from the river soil, from the water column of the estuary and ocean were collected and pyrosequenced. Sequences of osmolytes and enzymes of different microorganisms were obtained from the UniProt and used as RefSeqs for homology identification (TBLASTN) in metagenomic databases. The sequences were submitted to HMMER for the functional domains identification. Some enzymes were identified: alpha-trehalose-phosphate synthase, L-ectoina synthase (EctC), transaminase L-2 ,4-diaminobutyric acid (EctB), L-2 ,4-diaminobutyric acetyltransferase (EctA), L-threonine 3 dehydrogenase (sorbitol pathway), glycerol-3-phosphate dehydrogenase, inositol 3-phosphate dehydrogenase, chaperones, L-proline, glycine betaine binding ABC transporter, myo-inositol-1-phosphate synthase protein of proline simportadora / PutP sodium-and trehalose-6-phosphate phosphatase These proteins are commonly related to saline environments, however the identification of them in river environment is justified by the high salt concentration in the soil during prolonged dry seasons this river. Regarding the richness of the microbiota the river substrate has an abundance of halobacteria similar to the sea and more than the estuary. These data confirm the existence of a specialized response against salt stress by microorganisms in the environment of the Jundiaí river

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hoy día, se presta la atención a los derivados de furano y a los procesos catalíticos alrededor de éstos para la conversión de los azúcares contenidos en la biomasa lignocelulósica. En este sentido, el furfural también recibe una especial atención como potencial químico para la producción de bioproductos y biocombustibles. Debido a las dificultades presentadas en la separación del furfural en el proceso convencional, en este trabajo se presenta el análisis de la separación para obtener furfural de alta pureza a partir de xilosa deshidratada por destilación reactiva como proceso no convencional, aplicando la teoría básica de análisis estático para obtener la mejor información del proceso de destilación reactiva, obteniendo un esquema tecnológico que permite alcanzar una fracción molar de furfural de aproximadamente 0.9.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Herein, solubility experimental data for six monosaccharides, viz. D-(+)-glucose, D-(+)-mannose, D-(-)-fructose, D-(+)-galactose, D-(+)-xylose and L-(+)-arabinose, in four ionic liquids (ILs), at temperatures ranging from 288.2 to 348.2 K, were obtained aimed at gathering a better understanding of their solvation ability and molecular-level mechanisms which rule the dissolution process. To ascertain the chemical features that enhance the solubility of monosaccharides, ILs composed of dialkylimidazolium or tetra-alkylphosphonium cations combined with the dicyanamide, dimethylphosphate or chloride anions were investigated. It was found that the ranking of the solubility of monosaccharides depends on the IL; yet, D-(+)-xylose is always the most soluble while D-(-)-fructose is the least soluble monosaccharide. The results obtained show that both the IL cation and the anion play a major role in the solubility of monosaccharides. Finally, from the determination of the respective thermodynamic properties of solution, it was found that enthalpic contributions are dominant in the solubilization process. However, the observed differences in the solubilities of monosaccharides in 1-butyl-3-methylimidazolium dicyanamide are ruled by a change in the entropy of solution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Samples of cultivated Ulva clathrata were collected from a medium scale system (MSS, 1.5 1.5 m tank), or from a large scale system (LSS, 0.8 ha earthen pond). MSS samples were dried directly while the LSS sample was washed in freshwater and pressed before drying. Crude protein content ranged 20–26%, essential amino acids accounting for 32–36% of crude protein. The main analysed monosaccharides were rhamnose (36–40%), uronic acids (27–29%), xylose (10–13%) and glucose (10–16%). Some notable variations between MSS and LSS samples were observed for total dietary fibre (26% vs 41%), saturated fatty acids (31% vs 51%), PUFAS (33% vs 13%), carotenoids (358 vs 169 mg kg1 dw) and for Ca (9 vs 19 g kg1 ), Fe (0.6 vs 4.2 g kg1 ), Cu (44 vs 14 mg kg1 ), Zn (93 vs 17 mg kg1 ) and As (2 vs 9 mg kg1 ). The chemical composition of U. clathrata indicates that it has a good potential for its use in human and animal food.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a hospital environment, these bacteria can be spread by insects such as ants, which are characterized by high adaptability to the urban environment. Staphylococcus is a leading cause of hospital infection. In Europe, Latin America, USA and Canada, the group of coagulase negative staphylococci (CoNS) is the second leading cause of these infections, according to SENTRY (antimicrobial surveillance program- EUA). In this study, we investigated the potential of ants (Hymenoptera: Formicidae) as vehicle mechanics of Staphylococcus bacteria in a public hospital, in Natal-RN. The ants were collected, day and night, from June 2007 to may 2008, in the following sectors: hospitals, laundry, kitchen, blood bank. The ants were identified according to the identification key of Bolton, 1997. For the analysis of staphylococci, the ants were incubated in broth Tryptic Soy Broth (TSB) for 24 hours at 35 º C and then incubated on Mannitol Salt Agar. The typical colonies of staphylococci incubated for 24 hours at 35 ° C in Tryptic Soy Agar for the characterization tests (Gram stain, catalase, susceptibility to bacitracin and free coagulase). The identification of CoNS was performed through biochemical tests: susceptibility to novobiocin, growth under anaerobic conditions, presence of urease, the ornithine decarboxylation and acid production from the sugars mannose, maltose, trehalose, mannitol and xylose. The antimicrobial susceptibility examined by disk-diffusion technique. The technique of Polymerase Chain Reaction was used to confirm the presence of mecA gene and the ability to produce biofilm was verified by testing in vitro using polystyrene inert surface, in samples of resistant staphylococci. Among 440 ants, 85 (19.1%) were carrying coagulase-negative staphylococci (CoNS) of the species Staphylococcus saprophyticus (17), Staphylococcus epidermidis (15), Staphylococcus xylosus (13), Staphylococcus hominis hominis (10), Staphylococcus lugdunensis (10), Staphylococcus warneri (6), Staphylococcus cohnii urealyticum (5), Staphylococcus haemolyticus (3), Staphylococcus simulans (3), Staphylococcus cohnii cohnii (2), and Staphylococcus capitis (1). No Staphylococcus aureus was found. Among the isolates, 30.58% showed resistance to erythromycin. Two samples of CoNS (2.35%), obtained from the ant Tapinoma melanocephalum collected in the post-surgical female ward, S. Hominis hominis and S. lugdunensis harbored the mecA gene and were resistant to multiple antibiotics, and the specie S. hominis hominis even showed to be a biofilm producer. This study proves that ants act as carriers of multidrug-resistant coagulase-negative Staphylococci and biofilm producers and points to the risk of the spreading of pathogenic microorganisms by this insect in the hospital environment

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel mechanistic model for the saccharification of cellulose and hemicellulose is utilized to predict the products of hydrolysis over a range of enzyme loadings and times. The mechanistic model considers the morphology of the substrate and the kinetics of enzymes to optimize enzyme concentrations for the enzymatic hydrolysis of cellulose and hemicellulose simultaneously. Substrates are modeled based on their fraction of accessible sites, glucan content, xylan content, and degree of polymerizations. This enzyme optimization model takes into account the kinetics of six core enzymes for lignocellulose hydrolysis: endoglucanase I (EG1), cellobiohydrolase I (CBH1), cellobiohydrolase II (CBH2), and endo-xylanase (EX) from Trichoderma reesei; β-glucosidase (BG), and β-xylosidase (BX) from Aspergillus niger. The model employs the synergistic action of these enzymes to predict optimum enzyme concentrations for hydrolysis of Avicel and ammonia fiber explosion (AFEX) pretreated corn stover. Glucan, glucan + xylan, glucose and glucose + xylose conversion predictions are given over a range of mass fractions of enzymes, and a range of enzyme loadings. Simulation results are compared with optimizations using statistically designed experiments. BG and BX are modeled in solution at later time points to predict the effect on glucose conversion and xylose conversion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hardboard processing wastewater was evaluated as a feedstock in a bio refinery co-located with the hardboard facility for the production of fuel grade ethanol. A thorough characterization was conducted on the wastewater and the composition changes of which during the process in the bio refinery were tracked. It was determined that the wastewater had a low solid content (1.4%), and hemicellulose was the main component in the solid, accounting for up to 70%. Acid pretreatment alone can hydrolyze the majority of the hemicellulose as well as oligomers, and over 50% of the monomer sugars generated were xylose. The percentage of lignin remained in the liquid increased after acid pretreatment. The characterization results showed that hardboard processing wastewater is a feasible feedstock for the production of ethanol. The optimum conditions to hydrolyze hemicellulose into fermentable sugars were evaluated with a two-stage experiment, which includes acid pretreatment and enzymatic hydrolysis. The experimental data were fitted into second order regression models and Response Surface Methodology (RSM) was employed. The results of the experiment showed that for this type of feedstock enzymatic hydrolysis is not that necessary. In order to reach a comparatively high total sugar concentration (over 45g/l) and low furfural concentration (less than 0.5g/l), the optimum conditions were reached when acid concentration was between 1.41 to 1.81%, and reaction time was 48 to 76 minutes. The two products produced from the bio refinery were compared with traditional products, petroleum gasoline and traditional potassium acetate, in the perspective of sustainability, with greenhouse gas (GHG) emission as an indicator. Three allocation methods, system expansion, mass allocation and market value allocation methods were employed in this assessment. It was determined that the life cycle GHG emissions of ethanol were -27.1, 20.8 and 16 g CO2 eq/MJ, respectively, in the three allocation methods, whereas that of petroleum gasoline is 90 g CO2 eq/MJ. The life cycle GHG emissions of potassium acetate in mass allocation and market value allocation method were 555.7 and 716.0 g CO2 eq/kg, whereas that of traditional potassium acetate is 1020 g CO2/kg.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The United States of America is making great efforts to transform the renewable and abundant biomass resources into cost-competitive, high-performance biofuels, bioproducts, and biopower. This is the key to increase domestic production of transportation fuels and renewable energy, and reduce greenhouse gas and other pollutant emissions. This dissertation focuses specifically on assessing the life cycle environmental impacts of biofuels and bioenergy produced from renewable feedstocks, such as lignocellulosic biomass, renewable oils and fats. The first part of the dissertation presents the life cycle greenhouse gas (GHG) emissions and energy demands of renewable diesel (RD) and hydroprocessed jet fuels (HRJ). The feedstocks include soybean, camelina, field pennycress, jatropha, algae, tallow and etc. Results show that RD and HRJ produced from these feedstocks reduce GHG emissions by over 50% compared to comparably performing petroleum fuels. Fossil energy requirements are also significantly reduced. The second part of this dissertation discusses the life cycle GHG emissions, energy demands and other environmental aspects of pyrolysis oil as well as pyrolysis oil derived biofuels and bioenergy. The feedstocks include waste materials such as sawmill residues, logging residues, sugarcane bagasse and corn stover, and short rotation forestry feedstocks such as hybrid poplar and willow. These LCA results show that as much as 98% GHG emission savings is possible relative to a petroleum heavy fuel oil. Life cycle GHG savings of 77 to 99% were estimated for power generation from pyrolysis oil combustion relative to fossil fuels combustion for electricity, depending on the biomass feedstock and combustion technologies used. Transportation fuels hydroprocessed from pyrolysis oil show over 60% of GHG reductions compared to petroleum gasoline and diesel. The energy required to produce pyrolysis oil and pyrolysis oil derived biofuels and bioelectricity are mainly from renewable biomass, as opposed to fossil energy. Other environmental benefits include human health, ecosystem quality and fossil resources. The third part of the dissertation addresses the direct land use change (dLUC) impact of forest based biofuels and bioenergy. An intensive harvest of aspen in Michigan is investigated to understand the GHG mitigation with biofuels and bioenergy production. The study shows that the intensive harvest of aspen in MI compared to business as usual (BAU) harvesting can produce 18.5 billion gallons of ethanol to blend with gasoline for the transport sector over the next 250 years, or 32.2 billion gallons of bio-oil by the fast pyrolysis process, which can be combusted to generate electricity or upgraded to gasoline and diesel. Intensive harvesting of these forests can result in carbon loss initially in the aspen forest, but eventually accumulates more carbon in the ecosystem, which translates to a CO2 credit from the dLUC impact. Time required for the forest-based biofuels to reach carbon neutrality is approximately 60 years. The last part of the dissertation describes the use of depolymerization model as a tool to understand the kinetic behavior of hemicellulose hydrolysis under dilute acid conditions. Experiments are carried out to measure the concentrations of xylose and xylooligomers during dilute acid hydrolysis of aspen. The experiment data are used to fine tune the parameters of the depolymerization model. The results show that the depolymerization model successfully predicts the xylose monomer profile in the reaction, however, it overestimates the concentrations of xylooligomers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Se describe la variante homocigota c.320-2A>G de TGM1 en dos hermanas con ictiosis congénita autosómica recesiva. El clonaje de los transcritos generados por esta variante permitió identificar tres mecanismos moleculares de splicing alternativos.