959 resultados para wood residues
Resumo:
The mechanism of active stress generation in tension wood is still not fully understood. To characterize the functional interdependency between the G-layer and the secondary cell wall, nanostructural characterization and mechanical tests were performed on native tension wood tissues of poplar (Populus nigra x Populus deltoids) and on tissues in which the G-layer was removed by an enzymatic treatment. In addition to the well-known axial orientation of the cellulose fibrils in the G-layer, it was shown that the microfibril angle of the S2-layer was very large (about 36 degrees). The removal of the G-layer resulted in an axial extension and a tangential contraction of the tissues. The tensile stress-strain curves of native tension wood slices showed a jagged appearance after yield that could not be seen in the enzyme-treated samples. The behaviour of the native tissue was modelled by assuming that cells deform elastically up to a critical strain at which the G-layer slips, causing a drop in stress. The results suggest that tensile stresses in poplar are generated in the living plant by a lateral swelling of the G-layer which forces the surrounding secondary cell wall to contract in the axial direction.
Resumo:
The analysis of organic residues from pottery sherds using Gas-Chromatography with mass-spectroscopy (GC-MS) has revealed information about the variety of foods eaten and domestic routine at Silchester between the second and fourth–sixth centuries A.D. Two results are discussed in detail: those of a second-century Gauloise-type amphora and a fourth-century SE Dorset black-burnished ware (BB1) cooking pot, which reveal the use of pine pitch on the inner surface of the amphora and the use of animal fats (ruminant adipose fats) and leafy vegetables in cooking at the Roman town of Silchester, Hants.
Resumo:
The total phenol and anthocyanin contents of black currant pomace and black currant press residue (BPR) extracts, extracted with formic acid in methanol or with methanol/water/acetic acid, were studied. Anthocyanins and other phenols were identified by means of reversed phase HPLC, and differences between the two plant materials were monitored. In all BPR extracts, phenol levels, determined by the Folin-Ciocalteu method, were 8-9 times higher than in the pomace extracts. Acid hydrolysis liberated a much higher concentration of phenols from the pomace than from the black currant press residue. HPLC analysis revealed that delphinidin-3-O-glucoside, delphinidin-3-O-rutinoside, cyanidin-3-O-glucoside, and cyanidin-3-O-rutinoside were the major anthocyanins and constituted the main phenol class (approximate to 90%) in both types of black currant tissues tested. However, anthocyanins were present in considerably lower amounts in the pomace than in the BPR. In accordance with the total phenol content, the antioxidant activity determined by scavenging of 2,2'-azinobis(3-ethylbenzothiazoline-6- sulfonic acid) radical cation, the ABTS(center dot+) assay, showed that BPR extracts prepared by solvent extraction exhibited significantly higher (7-10 times) radical scavenging activity than the pomace extracts, and BPR anthocyanins contributed significantly (74 and 77%) to the observed high radical scavenging capacity of the corresponding extracts.
Resumo:
The antioxidant capacity of oak wood used in the ageing of wine was studied by four different methods: measurement of scavenging capacity against a given radical (ABTS, DPPH), oxygen radical absorbance capacity (ORAC) and the ferric reducing antioxidant power (FRAP). Although, the four methods tested gave comparable results for the antioxidant capacity measured in oak wood extracts, the ORAC method gave results with some differences from the other methods. Non-toasted oak wood samples displayed more antioxidant power than toasted ones due to differences in the polyphenol compositon. A correlation analysis revealed that ellagitannins were the compounds mainly responsible for the antioxidant capacity of oak wood. Some phenolic acids, mainly gallic acid, also showed a significant correlation with antioxidant capacity.
Resumo:
The accurate prediction of the biochemical function of a protein is becoming increasingly important, given the unprecedented growth of both structural and sequence databanks. Consequently, computational methods are required to analyse such data in an automated manner to ensure genomes are annotated accurately. Protein structure prediction methods, for example, are capable of generating approximate structural models on a genome-wide scale. However, the detection of functionally important regions in such crude models, as well as structural genomics targets, remains an extremely important problem. The method described in the current study, MetSite, represents a fully automatic approach for the detection of metal-binding residue clusters applicable to protein models of moderate quality. The method involves using sequence profile information in combination with approximate structural data. Several neural network classifiers are shown to be able to distinguish metal sites from non-sites with a mean accuracy of 94.5%. The method was demonstrated to identify metal-binding sites correctly in LiveBench targets where no obvious metal-binding sequence motifs were detectable using InterPro. Accurate detection of metal sites was shown to be feasible for low-resolution predicted structures generated using mGenTHREADER where no side-chain information was available. High-scoring predictions were observed for a recently solved hypothetical protein from Haemophilus influenzae, indicating a putative metal-binding site.
Resumo:
A focused library of potential hydrogelators each containing two substituted aromatic residues separated by a urea or thiourea linkage have been synthesised and characterized. Six of these novel compounds are highly efficient hydrogelators, forming gels in aqueous solution at low concentrations (0.03–0.60 wt %). Gels were formed through a pH switching methodology, by acidification of a basic solution (pH 14 to ≈4) either by addition of HCl or via the slow hydrolysis of glucono-δ-lactone. Frequently, gelation was accompanied by a dramatic switch in the absorption spectra of the gelators, resulting in a significant change in colour, typically from a vibrant orange to pale yellow. Each of the gels was capable of sequestering significant quantities of the aromatic cationic dye, methylene blue, from aqueous solution (up to 1.02 g of dye per gram of dry gelator). Cryo-transmission electron microscopy of two of the gels revealed an extensive network of high aspect ratio fibers. The structure of the fibers altered dramatically upon addition of 20 wt % of the dye, resulting in aggregation and significant shortening of the fibrils. This study demonstrates the feasibility for these novel gels finding application as inexpensive and effective water purification platforms.