921 resultados para visualisation formalism
Resumo:
In the field of molecular biology, scientists adopted for decades a reductionist perspective in their inquiries, being predominantly concerned with the intricate mechanistic details of subcellular regulatory systems. However, integrative thinking was still applied at a smaller scale in molecular biology to understand the underlying processes of cellular behaviour for at least half a century. It was not until the genomic revolution at the end of the previous century that we required model building to account for systemic properties of cellular activity. Our system-level understanding of cellular function is to this day hindered by drastic limitations in our capability of predicting cellular behaviour to reflect system dynamics and system structures. To this end, systems biology aims for a system-level understanding of functional intraand inter-cellular activity. Modern biology brings about a high volume of data, whose comprehension we cannot even aim for in the absence of computational support. Computational modelling, hence, bridges modern biology to computer science, enabling a number of assets, which prove to be invaluable in the analysis of complex biological systems, such as: a rigorous characterization of the system structure, simulation techniques, perturbations analysis, etc. Computational biomodels augmented in size considerably in the past years, major contributions being made towards the simulation and analysis of large-scale models, starting with signalling pathways and culminating with whole-cell models, tissue-level models, organ models and full-scale patient models. The simulation and analysis of models of such complexity very often requires, in fact, the integration of various sub-models, entwined at different levels of resolution and whose organization spans over several levels of hierarchy. This thesis revolves around the concept of quantitative model refinement in relation to the process of model building in computational systems biology. The thesis proposes a sound computational framework for the stepwise augmentation of a biomodel. One starts with an abstract, high-level representation of a biological phenomenon, which is materialised into an initial model that is validated against a set of existing data. Consequently, the model is refined to include more details regarding its species and/or reactions. The framework is employed in the development of two models, one for the heat shock response in eukaryotes and the second for the ErbB signalling pathway. The thesis spans over several formalisms used in computational systems biology, inherently quantitative: reaction-network models, rule-based models and Petri net models, as well as a recent formalism intrinsically qualitative: reaction systems. The choice of modelling formalism is, however, determined by the nature of the question the modeler aims to answer. Quantitative model refinement turns out to be not only essential in the model development cycle, but also beneficial for the compilation of large-scale models, whose development requires the integration of several sub-models across various levels of resolution and underlying formal representations.
Resumo:
Kirjallisuusarvostelu
Resumo:
Human beings have always strived to preserve their memories and spread their ideas. In the beginning this was always done through human interpretations, such as telling stories and creating sculptures. Later, technological progress made it possible to create a recording of a phenomenon; first as an analogue recording onto a physical object, and later digitally, as a sequence of bits to be interpreted by a computer. By the end of the 20th century technological advances had made it feasible to distribute media content over a computer network instead of on physical objects, thus enabling the concept of digital media distribution. Many digital media distribution systems already exist, and their continued, and in many cases increasing, usage is an indicator for the high interest in their future enhancements and enriching. By looking at these digital media distribution systems, we have identified three main areas of possible improvement: network structure and coordination, transport of content over the network, and the encoding used for the content. In this thesis, our aim is to show that improvements in performance, efficiency and availability can be done in conjunction with improvements in software quality and reliability through the use of formal methods: mathematical approaches to reasoning about software so that we can prove its correctness, together with the desirable properties. We envision a complete media distribution system based on a distributed architecture, such as peer-to-peer networking, in which different parts of the system have been formally modelled and verified. Starting with the network itself, we show how it can be formally constructed and modularised in the Event-B formalism, such that we can separate the modelling of one node from the modelling of the network itself. We also show how the piece selection algorithm in the BitTorrent peer-to-peer transfer protocol can be adapted for on-demand media streaming, and how this can be modelled in Event-B. Furthermore, we show how modelling one peer in Event-B can give results similar to simulating an entire network of peers. Going further, we introduce a formal specification language for content transfer algorithms, and show that having such a language can make these algorithms easier to understand. We also show how generating Event-B code from this language can result in less complexity compared to creating the models from written specifications. We also consider the decoding part of a media distribution system by showing how video decoding can be done in parallel. This is based on formally defined dependencies between frames and blocks in a video sequence; we have shown that also this step can be performed in a way that is mathematically proven correct. Our modelling and proving in this thesis is, in its majority, tool-based. This provides a demonstration of the advance of formal methods as well as their increased reliability, and thus, advocates for their more wide-spread usage in the future.
Resumo:
This paper examines the relation between intuition and concept in Kant in light of John McDowell's neo-Kantian position that intuitions are concept-laden.2 The focus is on Kant's twofold pronouncement that thoughts without content are empty and that intuitions without concepts are blind. I show that intuitions as singular representations are not instances of passive data intake but the result of synthetic unification of the given manifold of the senses by the power of the imagination under the guidance of the understanding. Against McDowell I argue that the amenability of intuitions to conceptual determination is not due some pre-existing, absolute conceptuality of the real but to the "work of the subject."3 On a more programmatic level, this paper seeks to demonstrate the limitations of a selective appropriation of Kant and the philosophical potential of a more comprehensive and thorough consideration of his work. Section 1 addresses the unique balance in Kant's philosophy between the work on particular problems and the orientation toward a systematic whole. Section 2 outlines McDowell's take on the Kantian distinction between intuition and concept in the context of the Kant readings by Sellars and Strawson. Section 3 exposes McDowell's relapse into the Myth of the Given. Section 4 proposes a reading of Kant's theoretical philosophy as an epistemology of metaphysical cognition. Section 5 details Kant's original account of sensible intuition in the Inaugural-Dissertation of 1770. Section 6 presents the transition from the manifold of the senses to the synthesis in the imagination and the unification through the categories in the Critique of pure reason (1781 and 1787). Section 7 addresses Kant's formalism in epistemology and metaphysics.
Resumo:
Classical aesthetics sees the experience of the beautiful as an anthropological necessity. But, in fact, the beautiful is rather the central category designating classical art, and one can question the relevance of this category considering contemporary art. The reference term most frequently used for contemporary art is interesting: works of art solicit the interests of my faculties (the cognitive-intellectual, the pragmatic community-oriented moral, the affective aesthetic faculties). It is interesting to notice that the categories of the beautiful and the ugly have an axiological-moral value. It looks as if the qualities of contemporary art works are judged according to the intensity of the impact on the interests of our faculties. It reveals important, in this respect, to distinguish the ugly from the sublime and the monstrous. Kants Third Critique is of some importance in defining these categories.
Resumo:
In this work, the magnetic field penetration depth for high-Tc cuprate superconductors is calculated using a recent Interlayer Pair Tunneling (ILPT) model proposed by Chakravarty, Sudb0, Anderson, and Strong [1] to explain high temperature superconductivity. This model involves a "hopping" of Cooper pairs between layers of the unit cell which acts to amplify the pairing mechanism within the planes themselves. Recent work has shown that this model can account reasonably well for the isotope effect and the dependence of Tc on nonmagnetic in-plane impurities [2] , as well as the Knight shift curves [3] and the presence of a magnetic peak in the neutron scattering intensity [4]. In the latter case, Yin et al. emphasize that the pair tunneling must be the dominant pairing mechanism in the high-Tc cuprates in order to capture the features found in experiments. The goal of this work is to determine whether or not the ILPT model can account for the experimental observations of the magnetic field penetration depth in YBa2Cu307_a7. Calculations are performed in the weak and strong coupling limits, and the efi"ects of both small and large strengths of interlayer pair tunneling are investigated. Furthermore, as a follow up to the penetration depth calculations, both the neutron scattering intensity and the Knight shift are calculated within the ILPT formalism. The aim is to determine if the ILPT model can yield results consistent with experiments performed for these properties. The results for all three thermodynamic properties considered are not consistent with the notion that the interlayer pair tunneling must be the dominate pairing mechanism in these high-Tc cuprate superconductors. Instead, it is found that reasonable agreement with experiments is obtained for small strengths of pair tunneling, and that large pair tunneling yields results which do not resemble those of the experiments.
Resumo:
We study the ultrasonic attenuation in layered superconductors using the Green's function formalism. General expressions are derived analytically and then calculated numerically by taking the nearest and next-nearest interactions in a disordered layered superconductor with random hoppings. Our results show huge anisotropics of ultrasonic attenuation in the superconductors and the strong dependence of ultrasonic attenuation on the temperature and the direction of polarization of the sound wave.
Resumo:
Western law schools are suffering from an identity and moral crisis. Many of the legal profession's problems can be traced to the law school environment, where students are taught to reason and practice in ways that are often at odds with their own personalities and values and even with generally accepted psychologically healthy practices. The idealism, ethic of care, and personal moral compasses of many students become eroded and even lost in the present legal education system. Formalism, rationalism, elitism, and big business values have become paramount. In such a moment of historical crisis, there exists the opportunity to create a new legal education story. This paper is a conceptual study of both my own Canadian legal education and the general legal education experience. It examines core problems and critiques of the existing Western legal education organizational and pedagogical paradigm to which Canadian law schools adhere. New approaches with the potential to enrich, humanize, and heal the Canadian law school experience are explored. Ultimately, the paper proposes a legal education system that is more interdisciplinary, theoretically and practically integrated, emotionally intelligent, technologically connected, morally accountable, spiritual, and humane. Specific pedagogical and curricular strategies are suggested, and recommendations for the future are offered. The dehumanizing aspects of the law school experience in Canada have rarely been studied. It is hoped that this thesis will fill a gap in the research and provide some insight into an issue that is of both academic and public importance, since the well-being of law students and lawyers affects the interests of their clients, the general public, and the integrity and future of the entire legal system.
Resumo:
We have presented a Green's function method for the calculation of the atomic mean square displacement (MSD) for an anharmonic Hamil toni an . This method effectively sums a whole class of anharmonic contributions to MSD in the perturbation expansion in the high temperature limit. Using this formalism we have calculated the MSD for a nearest neighbour fcc Lennard Jones solid. The results show an improvement over the lowest order perturbation theory results, the difference with Monte Carlo calculations at temperatures close to melting is reduced from 11% to 3%. We also calculated the MSD for the Alkali metals Nat K/ Cs where a sixth neighbour interaction potential derived from the pseudopotential theory was employed in the calculations. The MSD by this method increases by 2.5% to 3.5% over the respective perturbation theory results. The MSD was calculated for Aluminum where different pseudopotential functions and a phenomenological Morse potential were used. The results show that the pseudopotentials provide better agreement with experimental data than the Morse potential. An excellent agreement with experiment over the whole temperature range is achieved with the Harrison modified point-ion pseudopotential with Hubbard-Sham screening function. We have calculated the thermodynamic properties of solid Kr by minimizing the total energy consisting of static and vibrational components, employing different schemes: The quasiharmonic theory (QH), ).2 and).4 perturbation theory, all terms up to 0 ().4) of the improved self consistent phonon theory (ISC), the ring diagrams up to o ().4) (RING), the iteration scheme (ITER) derived from the Greens's function method and a scheme consisting of ITER plus the remaining contributions of 0 ().4) which are not included in ITER which we call E(FULL). We have calculated the lattice constant, the volume expansion, the isothermal and adiabatic bulk modulus, the specific heat at constant volume and at constant pressure, and the Gruneisen parameter from two different potential functions: Lennard-Jones and Aziz. The Aziz potential gives generally a better agreement with experimental data than the LJ potential for the QH, ).2, ).4 and E(FULL) schemes. When only a partial sum of the).4 diagrams is used in the calculations (e.g. RING and ISC) the LJ results are in better agreement with experiment. The iteration scheme brings a definitive improvement over the).2 PT for both potentials.
Resumo:
Four problems of physical interest have been solved in this thesis using the path integral formalism. Using the trigonometric expansion method of Burton and de Borde (1955), we found the kernel for two interacting one dimensional oscillators• The result is the same as one would obtain using a normal coordinate transformation, We next introduced the method of Papadopolous (1969), which is a systematic perturbation type method specifically geared to finding the partition function Z, or equivalently, the Helmholtz free energy F, of a system of interacting oscillators. We applied this method to the next three problems considered• First, by summing the perturbation expansion, we found F for a system of N interacting Einstein oscillators^ The result obtained is the same as the usual result obtained by Shukla and Muller (1972) • Next, we found F to 0(Xi)f where A is the usual Tan Hove ordering parameter* The results obtained are the same as those of Shukla and Oowley (1971), who have used a diagrammatic procedure, and did the necessary sums in Fourier space* We performed the work in temperature space• Finally, slightly modifying the method of Papadopolous, we found the finite temperature expressions for the Debyecaller factor in Bravais lattices, to 0(AZ) and u(/K/ j,where K is the scattering vector* The high temperature limit of the expressions obtained here, are in complete agreement with the classical results of Maradudin and Flinn (1963) .
Resumo:
In 1973, Kathleen Pearson offered a pivotal first step into understanding deception in competitive sport and its many intricacies. However, the analysis falls short of truly deciphering this widespread phenomenon. By creating a taxonomy based on Torres (2000) understanding of various types of skills in an athletic contest, a wider array of deceptive practices are encompassed. Once the taxonomy is put forth, weighing the categories against the three-pronged ethical permissibility test established utilizing elements from formalism, conventionalism and broad internalism sheds lights on what deceptive practices should be deemed ethically permissible for use and which tactics should not be a part of an athlete’s repertoire. By understanding which categories of deception are permissible, the most fair and athletically excellent contest can be created between the opposing players of teams.
Resumo:
Ce rapport de recherche porte sur une étude s’intéressant au transfert des connaissances tacites chez les gestionnaires, c’est-à-dire le partage de ces connaissances et leur utilisation informelle, durant une situation de coordination dans un service municipal. La thèse est articulée autour des questions suivantes : Quelles sont les situations de coordination vécues par les gestionnaires municipaux? Quelles sont les sources de connaissances tacites partagées et utilisées? Quelles sont les relations de connaissances mobilisées de façon informelle lors du transfert des connaissances tacites? Quels sont les facteurs encourageant ou inhibant le transfert informel des connaissances tacites? À partir d’un modèle basé sur une approche situationnelle (Taylor, 1989 et 1991), nous avons revu la documentation touchant nos questions de recherche. Nous avons défini notamment la récursivité des connaissances et le réseau de connaissances, de même que présenté le modèle de la conversion des connaissances (Nonaka, 1994) et celui de l’actualisation de soi (St-Arnaud, 1996). Nous avons questionné 22 répondants à l’aide d’instruments de mesure qui combinent les techniques de l’incident critique, de l’entrevue cognitive et réflexive, le questionnement sur les réseaux organisationnels et l’observation participante. Tels des filets, ces instruments ont permis de traquer et d’obtenir des données d’une grande richesse sur les connaissances tacites et les comportements informels durant le transfert de connaissances en situation de coordination. Ces données ont été analysées selon une approche méthodologique essentiellement qualitative combinant l’analyse de contenu, la schématisation heuristique et l’analyse des réseaux sociaux. Nos résultats montrent que la complexité d’une situation de coordination conditionne le choix des mécanismes de coordination. De plus, les sources de connaissances sont, du point de vue individuel, le gestionnaire et ses artefacts, de même que son réseau personnel avec ses propres artefacts. Du point de vue collectif, ces sources sont réifiées dans le réseau de connaissances. Les connaissances clés d’une situation de coordination sont celles sur le réseau organisationnel, le contexte, les expériences en gestion et en situation complexe de coordination, la capacité de communiquer, de négocier, d’innover et celle d’attirer l’attention. Individuellement, les gestionnaires privilégient l’actualisation de soi, l’autoformation et la formation contextualisée et, collectivement, la coprésence dans l’action, le réseautage et l’accompagnement. Cette étude fournit un modèle valide du transfert contextualisé des connaissances qui est un cas de coordination complexe d’activités en gestion des connaissances. Ce transfert est concomitant à d’autres situations de coordination. La nature tacite des connaissances prévaut, de même que le mode informel, les médias personnels et les mécanismes d’ajustement mutuel. Les connaissances tacites sont principalement transférées au début des processus de gestion de projet et continuellement durant la rétroaction et le suivi des résultats. Quant aux connaissances explicites, les gestionnaires les utilisent principalement comme un symbole à la fin des processus de gestion de projet. Parmi les personnes et les groupes de personnes d’une situation de transfert contextualisé des connaissances, 10 % jouent des rôles clés, soit ceux d’experts et d’intermédiaires de personnes et d’artefacts. Les personnes en périphérie possèdent un potentiel de structuration, c’est-à-dire de connexité, pour assurer la continuité du réseau de connaissances organisationnel. Notre étude a élargi le modèle général de la complexité d’une situation (Bystrom, 1999; Choo, 2006; Taylor, 1986 et 1991), la théorie de la coordination (Malone et Crowston, 1994), le modèle de la conversion des connaissances (Nonaka, 1994), celui de l’actualisation de soi (St-Arnaud, 1996) et la théorie des réseaux de connaissances (Monge et Contractor, 2003). Notre modèle réaffirme la concomitance de ces modèles généraux selon une approche constructiviste (Giddens, 1987) où la dualité du structurel et la compétence des acteurs sont confirmées et enrichies.
Resumo:
"Mémoire présenté à la Faculté des études supérieures en vue de l'obtention du grade de Maîtrise en droit - option recherche(LL.M)"
Resumo:
"Mémoire présenté à la Faculté des études supérieures en vue de l'obtention du grade de LL.M. en droit option droit des affaires"
Resumo:
De nouveaux modèles d'atmosphère sont présentés, incluant les profils de raie d'hélium neutre améliorés de Beauchamp (1995) et le formalisme de probabilité d'occupation pour ce même atome. Ces modèles sont utilisés pour calculer une grille de spectres synthétiques correspondant à des atmosphères riches en hélium et contenant des traces d'hydrogène. Cette grille est utilisée pour déterminer les paramètres atmosphériques principaux des étoiles de notre échantillon, soient la température effective, la gravité de surface et l'abondance d'hydrogène. Notre échantillon contient des spectres visibles de haut rapport signal-sur-bruit pour 102 naines blanches riches en hélium, dont 29 ont été observés au cours de ce projet, ce qui en fait le plus grand échantillon de spectres de qualité de naines blanches riches en hélium. Des spectres synthétiques ont été calculés en utilisant différentes valeurs du paramètre α de la théorie de la longueur de mélange dans le but de calibrer empiriquement la valeur de ce paramètre pour les DB. Afin d'améliorer la précision sur les paramètres atmosphériques de quelques étoiles, nous avons utilisé des spectres couvrant la raie Hα pour mieux déterminer l'abondance d'hydrogène. Finalement, nous avons calculé la distribution de masse de notre échantillon et la fonction de luminosité des DB. La distribution de masse montre une coupure à 0.5 fois la masse solaire qui est prédite par les modèles d'évolution stellaire et dévoile une masse moyenne significativement plus élevée pour les étoiles de type DBA. La masse moyenne de l'ensemble des DB et DBA est très proche de celle des DA. La fonction de luminosité nous permet de calculer que le rapport du nombre de DB sur le nombre de DA vaut environ 25%.