996 resultados para turbulent jet flames
Resumo:
Direct numerical simulation of the turbulent boundary layer over a sharp cone with 20 degrees cone angle (or 10 degrees half-cone angle) is performed by using the mixed seventh-order up-wind biased finite difference scheme and sixth-order central difference scheme. The free stream Mach number is 0.7 and free stream unit Reynolds number is 250000/inch. The characteristics of transition and turbulence of the sharp cone boundary layer are compared with those of the flat plate boundary layer. Statistics of fully developed turbulent flow agree well with the experimental and theoretical data for the turbulent flat-plate boundary layer flow. The near wall streak-like structure is shown and the average space between streaks (normalized by the local wall unit) keeps approximately invariable at different streamwise locations. The turbulent energy equation in the cylindrical coordinate is given and turbulent energy budget is studied. The computed results show that the effect of circumferential curvature on turbulence characteristics is not obvious.
Resumo:
A relative displacement between the grid points of optical fields and those of phase screens may occur in the simulation of light propagation through the turbulent atmosphere. A statistical interpolator is proposed to solve this problem in this paper. It is evaluated by the phase structure function and numerical experiments of light propagation through atmospheric turbulence with/without adaptive optics (AO) and it is also compared with the well-known linear interpolator under the same condition. Results of the phase structure function show that the statistical interpolator is more accurate in comparison with the linear one, especially in the high frequency region. More importantly, the long-exposure results of light propagation through the turbulent atmosphere with/without AO also show that the statistical interpolator is more accurate and reliable than the linear one. (C) 2009 Optical Society of America.
Resumo:
An experimental study of the interaction between shock wave and turbulent boundary layer induced by blunt fin has been carried out at M-infinity = 7.8 using oil flow visualization and simultaneous measurements of fluctuating wall pressure and heat transfer. This paper presents the effects of Mach number on turbulent separation behaviours induced by blunt fin.
Resumo:
In the present paper, a liquid (or melt) film of relatively high temperature ejected from a vessel and painted on the-moving solid film is analyzed by using the second-order fluid model of the non-Newtonian fluid. The thermocapillary flow driven by the temperature gradient on the free surface of a Newtonian liquid film was discussed before. The effect of rheological fluid on thermocapillary flow is considered in the present paper. The analysis is based on the approximations of lubrication theory and perturbation theory. The equation of liquid height and the process of thermal hydrodynamics of the non-Newtonian liquid film are obtained, and the case of weak effect of the rheological fluid is solved in detail.
Resumo:
In a supersonic chemical oxygen-iodine laser (COIL) operating without primary buffer gas, the features of flowfield have significant effects on the Laser efficiency and beam quality. In this paper three-dimensional, multi-species, chemically reactive CFD technology was used to study the flowfield in mixing nozzle implemented with a supersonic interleaving jet configuration. The features of the flowfield as well as its effect on the spatial distribution of small signal gain were analyzed.