854 resultados para tumour metabolism
Resumo:
Glucose metabolism is difficult to image with cellular resolution in mammalian brain tissue, particularly with (18) fluorodeoxy-D-glucose (FDG) positron emission tomography (PET). To this end, we explored the potential of synchrotron-based low-energy X-ray fluorescence (LEXRF) to image the stable isotope of fluorine (F) in phosphorylated FDG (DG-6P) at 1 μm(2) spatial resolution in 3-μm-thick brain slices. The excitation-dependent fluorescence F signal at 676 eV varied linearly with FDG concentration between 0.5 and 10 mM, whereas the endogenous background F signal was undetectable in brain. To validate LEXRF mapping of fluorine, FDG was administered in vitro and in vivo, and the fluorine LEXRF signal from intracellular trapped FDG-6P over selected brain areas rich in radial glia was spectrally quantitated at 1 μm(2) resolution. The subsequent generation of spatial LEXRF maps of F reproduced the expected localization and gradients of glucose metabolism in retinal Müller glia. In addition, FDG uptake was localized to periventricular hypothalamic tanycytes, whose morphological features were imaged simultaneously by X-ray absorption. We conclude that the high specificity of photon emission from F and its spatial mapping at ≤1 μm resolution demonstrates the ability to identify glucose uptake at subcellular resolution and holds remarkable potential for imaging glucose metabolism in biological tissue. © 2012 Wiley Periodicals, Inc.
Resumo:
In this article, we offer an overview of the compared quantitative importance of biotransformation reactions in the metabolism of drugs and other xenobiotics, based on a meta-analysis of current research interests. Also, we assess the relative significance the enzyme (super)families or categories catalysing these reactions. We put the facts unveiled by the analysis into a drug discovery context and draw some implications. The results confirm the primary role of cytochrome P450-catalysed oxidations and UDP-glucuronosyl-catalysed glucuronidations, but they also document the marked significance of several other reactions. Thus, there is a need for several drug discovery scientists to better grasp the variety of drug metabolism reactions and enzymes and their consequences.
Resumo:
Background : Epidermolytic hyperkeratosis (bullous congenital ichthyosiform erythroderma), characterized by ichthyotic, rippled hyperkeratosis, erythroderma and skin blistering, is a rare autosomal dominant disease caused by mutations in keratin 1 or keratin 10 (K10) genes. A severe phenotype is caused by a missense mutation in a highly conserved arginine residue at position 156 (R156) in K10. Objectives: To analyse molecular pathomechanisms of hyperproliferation and hyperkeratosis, we investigated the defects in mechanosensation and mechanotransduction in keratinocytes carrying the K10R156H mutation. Methods: Differentiated primary human keratinocytes infected with lentiviral vectors carrying wild-type K10 (K10wt) or mutated K10R156H were subjected to 20% isoaxial stretch. Cellular fragility and mechanosensation were studied by analysis of mitogen-activated protein kinase activation and cytokine release. Results: Cultured keratinocytes expressing K10R156H showed keratin aggregate formation at the cell periphery, whereas the filament network in K10wt cells was normal. Under stretching conditions K10R156H keratinocytes exhibited about a twofold higher level of filament collapse compared with steady state. In stretched K10R156H cells, higher p38 activation, higher release of tumour necrosis factor-alpha and RANTES but reduced interleukin-1 beta secretion compared with K10wt cells was observed. Conclusions: These results demonstrate that the R156H mutation in K10 destabilizes the keratin intermediate filament network and affects stress signalling and inflammatory responses to mechanical stretch in differentiated cultured keratinocytes.
Resumo:
Modern cancer therapies should strive not only to eliminate malignant tissues but also to preserve healthy tissues and the patient's quality of life. Antigen-specific immunotherapy approaches are promising for either aspect since they are designed to only act against tissues expressing 1 or more specified tumour antigens. In order to develop successful vaccine and adoptive transfer protocols, longitudinal monitoring of cancer patients taking part in clinical trials is mandatory. Here, in vivo expansion of antigen-specific cells, as well as their ex vivo functional status represent important parameters to be analysed. To obtain results that most closely reflect the cells' in vivo status, functional assays must be carried out with as little in vitro culturing as possible. The present minireview discusses recent advances in these domains.
Resumo:
Proton magnetic resonance spectroscopy (1H-MRS) has been used in a number of studies to noninvasively assess the temporal changes of lactate in the activated human brain. However, the results have not been consistent. The aim of the present study was to test the sensitivity of 1H-MRS during functional experiments at the highest magnetic field currently available for human studies (7 T). Stability and reproducibility of the measurements were evaluated from LCModel analysis of time series of spectra measured during a visual stimulation paradigm and by examination of the difference between spectra obtained at rest and during activation. The sensitivity threshold to detect concentration changes was 0.2 micromol/g for most of the quantified metabolites. The possible variations of metabolite concentrations during visual stimulation were within the same range (+/-0.2 micromol/g). In addition, the influence of a small line-narrowing effect due to the blood oxygenation level-dependent (BOLD) T2* changes on the estimated concentrations was simulated. Quantification of metabolites was, in general, not affected beyond 1% by line-width changes within 0.5 Hz.
Resumo:
The development of chemoresistance represents a major obstacle in the successful treatment of cancers such as neuroblastoma (NB), a particularly aggressive childhood solid tumour. The mechanisms underlying the chemoresistant phenotype in NB were addressed by gene expression profiling of two doxorubicin (DoxR)-resistant vs sensitive parental cell lines. Not surprisingly, the MDR1 gene was included in the identified upregulated genes, although the highest overexpressed transcript in both cell lines was the frizzled-1 Wnt receptor (FZD1) gene, an essential component of the Wnt/beta-catenin pathway. FZD1 upregulation in resistant variants was shown to mediate sustained activation of the Wnt/beta-catenin pathway as revealed by nuclear beta-catenin translocation and target genes transactivation. Interestingly, specific micro-adapted short hairpin RNA (shRNAmir)-mediated FZD1 silencing induced parallel strong decrease in the expression of MDR1, another beta-catenin target gene, revealing a complex, Wnt/beta-catenin-mediated implication of FZD1 in chemoresistance. The significant restoration of drug sensitivity in FZD1-silenced cells confirmed the FZD1-associated chemoresistance. RNA samples from 21 patient tumours (diagnosis and postchemotherapy), showed a highly significant FZD1 and/or MDR1 overexpression after treatment, underlining a role for FZD1-mediated Wnt/beta-catenin pathway in clinical chemoresistance. Our data represent the first implication of the Wnt/beta-catenin pathway in NB chemoresistance and identify potential new targets to treat aggressive and resistant NB.
Resumo:
BACKGROUND: The visceral (VAT) and subcutaneous (SCAT) adipose tissues play different roles in physiology and obesity. The molecular mechanisms underlying their expansion in obesity and following body weight reduction are poorly defined. METHODOLOGY: C57Bl/6 mice fed a high fat diet (HFD) for 6 months developed low, medium, or high body weight as compared to normal chow fed mice. Mice from each groups were then treated with the cannabinoid receptor 1 antagonist rimonabant or vehicle for 24 days to normalize their body weight. Transcriptomic data for visceral and subcutaneous adipose tissues from each group of mice were obtained and analyzed to identify: i) genes regulated by HFD irrespective of body weight, ii) genes whose expression correlated with body weight, iii) the biological processes activated in each tissue using gene set enrichment analysis (GSEA), iv) the transcriptional programs affected by rimonabant. PRINCIPAL FINDINGS: In VAT, "metabolic" genes encoding enzymes for lipid and steroid biosynthesis and glucose catabolism were down-regulated irrespective of body weight whereas "structure" genes controlling cell architecture and tissue remodeling had expression levels correlated with body weight. In SCAT, the identified "metabolic" and "structure" genes were mostly different from those identified in VAT and were regulated irrespective of body weight. GSEA indicated active adipogenesis in both tissues but a more prominent involvement of tissue stroma in VAT than in SCAT. Rimonabant treatment normalized most gene expression but further reduced oxidative phosphorylation gene expression in SCAT but not in VAT. CONCLUSION: VAT and SCAT show strikingly different gene expression programs in response to high fat diet and rimonabant treatment. Our results may lead to identification of therapeutic targets acting on specific fat depots to control obesity.
Resumo:
In order to explore the magnitude and duration of the long-term residual effect of physical exercise, a mixed meal (55% CHO, 27% fat and 18% protein) was given to 10 young male volunteers on two occasions: after a 4-h resting period, and on the next day, 30 min after completion of a 3-h exercise at 50% VO2max. Energy expenditure and substrate utilization were determined by indirect calorimetry for 17 h after meal ingestion. The fuel mix oxidized after the meal was characterized by a greater contribution of lipid oxidation to total energy expenditure when the meal was ingested during the post-exercise period as compared with the meal ingested without previous exercise. During the night following the exercise, the stimulation of energy expenditure observed during the early recovery period gradually faded out. However, resting energy expenditure measured the next morning was significantly higher (+4.7%) than that measured without previous exercise. It is concluded that intense exercise stimulates both energy expenditure and lipid oxidation for a prolonged period.
Resumo:
Energy demand is an important constraint on neural signaling. Several methods have been proposed to assess the energy budget of the brain based on a bottom-up approach in which the energy demand of individual biophysical processes are first estimated independently and then summed up to compute the brain's total energy budget. Here, we address this question using a novel approach that makes use of published datasets that reported average cerebral glucose and oxygen utilization in humans and rodents during different activation states. Our approach allows us (1) to decipher neuron-glia compartmentalization in energy metabolism and (2) to compute a precise state-dependent energy budget for the brain. Under the assumption that the fraction of energy used for signaling is proportional to the cycling of neurotransmitters, we find that in the activated state, most of the energy ( approximately 80%) is oxidatively produced and consumed by neurons to support neuron-to-neuron signaling. Glial cells, while only contributing for a small fraction to energy production ( approximately 6%), actually take up a significant fraction of glucose (50% or more) from the blood and provide neurons with glucose-derived energy substrates. Our results suggest that glycolysis occurs for a significant part in astrocytes whereas most of the oxygen is utilized in neurons. As a consequence, a transfer of glucose-derived metabolites from glial cells to neurons has to take place. Furthermore, we find that the amplitude of this transfer is correlated to (1) the activity level of the brain; the larger the activity, the more metabolites are shuttled from glia to neurons and (2) the oxidative activity in astrocytes; with higher glial pyruvate metabolism, less metabolites are shuttled from glia to neurons. While some of the details of a bottom-up biophysical approach have to be simplified, our method allows for a straightforward assessment of the brain's energy budget from macroscopic measurements with minimal underlying assumptions.
Resumo:
BACKGROUND: Dietary acid charge enhances bone loss. Bicarbonate or alkali diet decreases bone resorption in humans. We compared the effect of an alkaline mineral water, rich in bicarbonate, with that of an acid one, rich in calcium only, on bone markers, in young women with a normal calcium intake. METHODS: This study compared water A (per litre: 520 mg Ca, 291 mg HCO(3)(-), 1160 mg SO(4)(-), Potential Renal Acid load (PRAL) +9.2 mEq) with water B (per litre: 547 mg Ca, 2172 mg HCO(3)(-), 9 mg SO(4)(-), PRAL -11.2 mEq). 30 female dieticians aged 26.3 yrs (SD 7.3) were randomized into two groups, followed an identical weighed, balanced diet (965 mg Ca) and drank 1.5 l/d of the assigned water. Changes in blood and urine electrolytes, C-telopeptides (CTX), urinary pH and bicarbonate, and serum PTH were measured after 2 and 4 weeks. RESULTS: The two groups were not different at baseline, and showed a similar increase in urinary calcium excretion. Urinary pH and bicarbonate excretion increased with water B, but not with water A. PTH (p=0.022) and S-CTX (p=0.023) decreased with water B but not with water A. CONCLUSION: In calcium sufficiency, the acid calcium-rich water had no effect on bone resorption, while the alkaline water rich in bicarbonate led to a significant decrease of PTH and of S-CTX.
Resumo:
The objective of this work was to evaluate the effect of growth regulators on gas diffusion and on metabolism of 'Brookfield' apple, and to determine their correlation with quality characteristics of fruit stored in controlled atmosphere. A completely randomized design was used with four replicates. After eight months of storage, the effects of water (control), aminoethoxyvinylglycine (AVG), AVG + ethephon, AVG + naphthaleneacetic acid (NAA), ethephon + NAA, sole NAA, 1-MCP, ethylene absorption by potassium permanganate (ABS), AVG + ABS, and of AVG + 1-MCP - applied at different rates and periods - were evaluated on: gas diffusion rate, ethylene production, respiratory rate, internal ethylene concentration, internal CO2 content, mealiness, and intercellular space. Fruit from the control and sole NAA treatments had the highest mealiness occurrence. Growth regulators significantly changed the gaseous diffusion through the pulp of 'Brookfield' apple, mainly in the treatment AVG + ABS, which kept the highest gas diffusion rate. NAA spraying in the field, with or without another growth regulator, increased ripening metabolism by rising ethylene production and respiration rate, and reduced gas diffusion during shelf life. AVG spraying cannot avoid the ethephon effect during the ripening process, and reduces both the internal space and mealiness incidence, but it is not able to induce ethylene production or to increase respiration rates.
Resumo:
BACKGROUND: Sunitinib (VEGFR/PDGFR inhibitor) and everolimus (mTOR inhibitor) are both approved for advanced renal cell carcinoma (RCC) as first-line and second-line therapy, respectively. In the clinics, sunitinib treatment is limited by the emergence of acquired resistance, leading to a switch to second-line treatment at progression, often based on everolimus. No data have been yet generated on programmed alternating sequential strategies combining alternative use of sunitinib and everolimus before progression. Such strategy is expected to delay the emergence of acquired resistance and improve tumour control. The aim of our study was to assess the changes in tumours induced by three different sequences administration of sunitinib and everolimus. METHODS: In human Caki-1 RCC xenograft model, sunitinib was alternated with everolimus every week, every 2 weeks, or every 3 weeks. Effects on necrosis, hypoxia, angiogenesis, and EMT status were assessed by immunohisochemistry and immunofluorescence. RESULTS: Sunitinib and everolimus programmed sequential regimens before progression yielded longer median time to tumour progression than sunitinib and everolimus monotherapies. In each group of treatment, tumour growth control was associated with inhibition of mTOR pathway and changes from a mesenchymal towards an epithelial phenotype, with a decrease in vimentin and an increase in E-cadherin expression. The sequential combinations of these two agents in a RCC mouse clinical trial induced antiangiogenic effects, leading to tumour necrosis. CONCLUSIONS: In summary, our study showed that alternate sequence of sunitinib and everolimus mitigated the development of mesenchymal phenotype compared with sunitinib as single agent.
Resumo:
Résumé Les études épidémiologiques indiquent que la restriction intra-utérine confère un risque accru de développement de diabète de type 2 au cours de la vie. Certaines études ont documenté la présence d'une résistance à l'insuline chez les jeunes adultes ou les adolescents nés petits pour l'âge gestationnel. Comme la plupart des études ont impliqués des individus post-pubères et comme la puberté influence de manière marquée le métabolisme énergétique, nous avons évalué le devenir du glucose administré oralement dans un groupe incluant essentiellement des enfants pré-pubères ou en début de puberté avec restriction intra-utérine, et chez des enfants matchés pour l'âge et pour le poids. Tous les enfants ont eu une évaluation de leur composition corporelle par mesure des plis cutanés. Ils ont ensuite été étudiés dans des conditions standardisées et ont reçu 4 charges consécutives orales de glucose à raison de 180 mg/kg de poids corporel jusqu'à atteindre un état d'équilibre relatif. La dépense énergétique et l'oxydation des substrats ont été évaluées durant la quatrième heure par calorimétrie indirecte. Comparativement avec les enfants matchés pour l'âge et le poids, les enfants nés petits pour l'âge gestationnel avaient une plus petite stature. Leur dépense énergétique n'était pas significativement abaissée, mais leur oxydation du glucose était plus basse. Ces résultats indiquent que des altérations métaboliques sont présentes précocement chez les enfants nés petits pour l'âge gestationnel, et qu'elles sont possiblement reliées à des altérations de la composition corporelle. Abstract: Epidemiological studies indicate that intrauterine growth restriction confers an increased risk of developing type 2 diabetes mellitus in subsequent life. Several studies have further documented the presence of insulin resistance in young adults or adolescent children born small for gestational age. Since most studies addressed postpubertal individuals, and since puberty markedly affects energy metabolism, we evaluated the disposal of oral glucose in a group including mainly prepubertal and early pubertal children with intrauterine growth restriction and in healthy age- and weight-matched control children. All children had an evaluation of their body composition by skinfold thickness measurements. They were then studied in standardized conditions and received 4 consecutive hourly loads of 180 mg glucose/kg body weight to reach a near steady state. Energy expenditure and substrate oxidation were evaluated during the fourth hour by indirect calorimetry. Compared to both age- and weight-matched children, children born small for gestational age had lower stature. Their energy expenditure was not significantly decreased, but they had lower glucose oxidation rates. These results indicate that metabolic alterations are present early in children born small for gestational age, and are possibly related to alterations of body composition.
Resumo:
The objective of this work was to evaluate the effect of inclusion of dietary glycerol in replacement to starch on the growth and energy metabolism of Nile tilapia juveniles. The experiment was carried out in a completely randomized design with four treatments (0, 5, 10, and 15% purified glycerol) and six replicates. Pelleted, isonitrogenous, and isocaloric diets were provided for 60 days. Growth performance parameters and muscle glucose and protein concentrations were not affected by dietary glycerol levels. The treatment with 15% glycerol presented higher levels of muscle and liver triglycerides. A quadratic effect of treatments on muscle and liver triglyceride concentrations was observed. The treatment with 0% glycerol presented higher hepatic glucose levels than the one with 15%. Treatments did not differ for concentrations of liver protein, as well as of plasma glucose, triglycerides, and protein. Treatments with 10 and 15% glycerol showed higher activity of the glucose-6-phosphate-dehydrogenase enzyme than the treatment with 5%; however, there were no significant differences in the hepatic activities of the malic and glycerol kinase enzymes. A linear positive effect of treatments was observed on the activity of the glycerol kinase enzyme in liver. Levels of glycerol inclusion above 10% in the diet of Nile tilapia juveniles characterize it as a lipogenic nutrient.