681 resultados para tribbles homologue


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although the CLN3 gene for Batten disease, the most common inherited neurovisceral storage disease of childhood, was identified in 1995, the function of the corresponding protein still remains elusive. We previously cloned the Saccharomyces cerevisiae homologue to the human CLN3 gene, designated BTN1, which is not essential and whose product is 39% identical and 59% similar to Cln3p. We report that btn1-Δ deletion yeast strains are more resistant to d-(−)-threo-2-amino-1-[p-nitrophenyl]-1,3-propanediol (denoted ANP), a phenotype that is complemented in yeast by the human CLN3 gene. Furthermore, the severity of Batten disease in humans and the degree of ANP resistance in yeast are related when the equivalent amino acid replacements in Cln3p and Btn1p are compared. These results indicate that yeast can be used as a model for the study of Batten disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A colonization mutant of the efficient root-colonizing biocontrol strain Pseudomonas fluorescens WCS365 is described that is impaired in competitive root-tip colonization of gnotobiotically grown potato, radish, wheat, and tomato, indicating a broad host range mutation. The colonization of the mutant is also impaired when studied in potting soil, suggesting that the defective gene also plays a role under more natural conditions. A DNA fragment that is able to complement the mutation for colonization revealed a multicistronic transcription unit composed of at least six ORFs with similarity to lppL, lysA, dapF, orf235/233, xerC/sss, and the largely incomplete orf238. The transposon insertion in PCL1233 appeared to be present in the orf235/233 homologue, designated orf240. Introduction of a mutation in the xerC/sss homologue revealed that the xerC/sss gene homologue rather than orf240 is crucial for colonization. xerC in Escherichia coli and sss in Pseudomonas aeruginosa encode proteins that belong to the λ integrase family of site-specific recombinases, which play a role in phase variation caused by DNA rearrangements. The function of the xerC/sss homologue in colonization is discussed in terms of genetic rearrangements involved in the generation of different phenotypes, thereby allowing a bacterial population to occupy various habitats. Mutant PCL1233 is assumed to be locked in a phenotype that is not well suited to compete for colonization in the rhizosphere. Thus we show the importance of phase variation in microbe–plant interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fractionation of the abundant small ribonucleoproteins (RNPs) of the trypanosomatid Leptomonas collosoma revealed the existence of a group of unidentified small RNPs that were shown to fractionate differently than the well-characterized trans-spliceosomal RNPs. One of these RNAs, an 80-nt RNA, did not possess a trimethylguanosine (TMG) cap structure but did possess a 5′ phosphate terminus and an invariant consensus U5 snRNA loop 1. The gene coding for the RNA was cloned, and the coding region showed 55% sequence identity to the recently described U5 homologue of Trypanosoma brucei [Dungan, J. D., Watkins, K. P. & Agabian, N. (1996) EMBO J. 15, 4016–4029]. The L. collosoma U5 homologue exists in multiple forms of RNP complexes, a 10S monoparticle, and two subgroups of 18S particles that either contain or lack the U4 and U6 small nuclear RNAs, suggesting the existence of a U4/U6⋅U5 tri-small nuclear RNP complex. In contrast to T. brucei U5 RNA (62 nt), the L. collosoma homologue is longer (80 nt) and possesses a second stem–loop. Like the trypanosome U3, U6, and 7SL RNA genes, a tRNA gene coding for tRNACys was found 98 nt upstream to the U5 gene. A potential for base pair interaction between U5 and SL RNA in the 5′ splice site region (positions −1 and +1) and downstream from it is proposed. The presence of a U5-like RNA in trypanosomes suggests that the most essential small nuclear RNPs are ubiquitous for both cis- and trans-splicing, yet even among the trypanosomatids the U5 RNA is highly divergent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aberrant DNA methylation is a common phenomenon in human cancer, but its patterns, causes, and consequences are poorly defined. Promoter methylation of the DNA mismatch repair gene MutL homologue (MLH1) has been implicated in the subset of colorectal cancers that shows microsatellite instability (MSI). The present analysis of four MspI/HpaII sites at the MLH1 promoter region in a series of 89 sporadic colorectal cancers revealed two main methylation patterns that closely correlated with the MSI status of the tumors. These sites were hypermethylated in tumor tissue relative to normal mucosa in most MSI(+) cases (31/51, 61%). By contrast, in the majority of MSI(−) cases (20/38, 53%) the same sites showed methylation in normal mucosa and hypomethylation in tumor tissue. Hypermethylation displayed a direct correlation with increasing age and proximal location in the bowel and was accompanied by immunohistochemically documented loss of MLH1 protein both in tumors and in normal tissue. Similar patterns of methylation were observed in the promoter region of the calcitonin gene that does not have a known functional role in tumorigenesis. We propose a model of carcinogenesis where different epigenetic phenotypes distinguish the colonic mucosa in individuals who develop MSI(+) and MSI(−) tumors. These phenotypes may underlie the different developmental pathways that are known to occur in these tumors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Iron is an essential nutrient for the survival of most organisms and has played a central role in the virulence of many infectious disease pathogens. Mycobacterial IdeR is an iron-dependent repressor that shows 80% identity in the functional domains with its corynebacterial homologue, DtxR (diphtheria toxin repressor). We have transformed Mycobacterium tuberculosis with a vector expressing an iron-independent, positive dominant, corynebacterial dtxR hyperrepressor, DtxR(E175K). Western blots of whole-cell lysates of M. tuberculosis expressing the dtxR(E175K) gene revealed the stable expression of the mutant protein in mycobacteria. BALB/c mice were infected by tail vein injection with 2 × 105 organisms of wild type or M. tuberculosis transformed with the dtxR mutant. At 16 weeks, there was a 1.2 log reduction in bacterial survivors in both spleen (P = 0.0002) and lungs (P = 0.006) with M. tuberculosis DtxR(E175K). A phenotypic difference in colonial morphology between the two strains also was noted. A computerized search of the M. tuberculosis genome for the palindromic consensus sequence to which DtxR and IdeR bind revealed six putative “iron boxes” within 200 bp of an ORF. Using a gel-shift assay we showed that purified DtxR binds to the operator region of five of these boxes. Attenuation of M. tuberculosis can be achieved by the insertion of a plasmid containing a constitutively active, iron-insensitive repressor, DtxR(E175K), which is a homologue of IdeR. Our results strongly suggest that IdeR controls genes essential for virulence in M. tuberculosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diversification of cone pigment spectral sensitivities during evolution is a prerequisite for the development of color vision. Previous studies have identified two naturally occurring mechanisms that produce variation among vertebrate pigments by red-shifting visual pigment absorbance: addition of hydroxyl groups to the putative chromophore binding pocket and binding of chloride to a putative extracellular loop. In this paper we describe the use of two blue-shifting mechanisms during the evolution of rodent long-wave cone pigments. The mouse green pigment belongs to the long-wave subfamily of cone pigments, but its absorption maximum is 508 nm, similar to that of the rhodopsin subfamily of visual pigments, but blue-shifted 44 nm relative to the human red pigment, its closest homologue. We show that acquisition of a hydroxyl group near the retinylidene Schiff base and loss of the chloride binding site mentioned above fully account for the observed blue shift. These data indicate that the chloride binding site is not a universal attribute of long-wave cone pigments as generally supposed, and that, depending upon location, hydroxyl groups can alter the environment of the chromophore to produce either red or blue shifts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CBP is a transcriptional coactivator required by many transcription factors for transactivation. Rubinstein–Taybi syndrome, which is an autosomal dominant syndrome characterized by abnormal pattern formation, has been shown to be associated with mutations in the Cbp gene. Furthermore, Drosophila CBP is required in hedgehog signaling for the expression of decapentapleigic, the Drosophila homologue of bone morphogenetic protein. However, no direct evidence exists to indicate that loss of one copy of the mammalian Cbp gene affects pattern formation. Here, we show that various abnormalities occur at high frequency in the skeletal system of heterozygous Cbp-deficient mice resulting from a C57BL/6-CBA × BALB/c cross. In support of a conserved signaling pathway for pattern formation in insects and mammals, the expression of Bmp7 was found to be reduced in the heterozygous mutants. The frequency of the different abnormalities was significantly lower in a C57BL/6-CBA background, suggesting that the genetic background is an important determinant of the variability and severity of the anomalies seen in Rubinstein–Taybi syndrome patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The peptide hormone gastrin was long believed to be specific for higher vertebrates, whereas its homologue, cholecystokinin (CCK), has been assumed to represent the original ancestor of the CCK/gastrin family. To trace the divergence of the CCK/gastrin family beyond birds, reptiles, and amphibians we have now examined sharks. Distinct CCK and gastrin peptides were identified in two shark species, the spiny dogfish (Squalus acanthias) and the porbeagle (Lamna cornubica). The corresponding genes and cDNAs were isolated and sequenced from the spiny dogfish. Comparison with several vertebrate species show that the CCK gene and peptide structures have been considerably more conserved than the corresponding gastrin structures. Alignment of the dogfish prepropeptides displays similarities that support the hypothesis that they share a common ancestor. Our findings move the CCK/gastrin family segregation back to at least 350 million years ago. This event must have occurred before, or perhaps during, the evolution of cartilagenous fishes, probably concomitant with the occurrence of gastric acid secretion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Drosophila shibire and its mammalian homologue dynamin regulate an early step in endocytosis. We identified a Caenorhabditis elegans dynamin gene, dyn-1, based upon hybridization to the Drosophila gene. The dyn-1 RNA transcripts are trans-spliced to the spliced leader 1 and undergo alternative splicing to code for either an 830- or 838-amino acid protein. These dyn-1 proteins are highly similar in amino acid sequence, structure, and size to the Drosophila and mammalian dynamins: they contain an N-terminal GTPase, a pleckstrin homology domain, and a C-terminal proline-rich domain. We isolated a recessive temperature-sensitive dyn-1 mutant containing an alteration within the GTPase domain that becomes uncoordinated when shifted to high temperature and that recovers when returned to lower temperatures, similar to D. shibire mutants. When maintained at higher temperatures, dyn-1 mutants become constipated, egg-laying defective, and produce progeny that die during embryogenesis. Using a dyn-1::lacZ gene fusion, a high level of dynamin expression was observed in motor neurons, intestine, and pharyngeal muscle. Our results suggest that dyn-1 function is required during development and for normal locomotion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Release of the excitatory neurotransmitter glutamate and the excessive stimulation of N-methyl-d-aspartate (NMDA)-type glutamate receptors is thought to be responsible for much of the neuronal death that occurs following focal hypoxia-ischemia in the central nervous system. Our laboratory has identified endogenous sulfated steroids that potentiate or inhibit NMDA-induced currents. Here we report that 3α-ol-5β-pregnan-20-one hemisuccinate (3α5βHS), a synthetic homologue of naturally occurring pregnanolone sulfate, inhibits NMDA-induced currents and cell death in primary cultures of rat hippocampal neurons. 3α5βHS exhibits sedative, anticonvulsant, and analgesic properties consistent with an action at NMDA-type glutamate receptors. Intravenous administration of 3α5βHS to rats (at a nonsedating dose) following focal cerebral ischemia induced by middle cerebral artery occlusion significantly reduces cortical and subcortical infarct size. The in vitro and in vivo neuroprotective effects of 3α5βHS demonstrate that this steroid represents a new class of potentially useful therapeutic agents for the treatment of stroke and certain neurodegenerative diseases that involve over activation of NMDA receptors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Immune responses of the malaria vector mosquito Anopheles gambiae were monitored systematically by the induced expression of five RNA markers after infection challenge. One newly isolated marker encodes a homologue of the moth Gram-negative bacteria-binding protein (GNBP), and another corresponds to a serine protease-like molecule. Additional previously described markers that respond to immune challenge encode the antimicrobial peptide defensin, a putative galactose lectin, and a putative serine protease. Specificity of the immune responses was indicated by differing temporal patterns of induction of specific markers in bacteria-challenged larvae and adults, and by variations in the effectiveness of different microorganisms and their components for marker induction in an immune-responsive cell line. The markers exhibit spatially distinct patterns of expression in the adult female mosquito. Two of them are highly expressed in different regions of the midgut, one in the anterior and the other in the posterior midgut. Marker induction indicates a significant role of the midgut in insect innate immunity. Immune responses to the penetration of the midgut epithelium by a malaria parasite occur both within the midgut itself and elsewhere in the body, suggesting an immune-related signaling process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Xenopus Zic3 is a Xenopus homologue of mouse Zic and Drosophila pair-rule gene, odd-paired. We show here that Zic3 has significant roles both in neural and neural crest development in Xenopus embryo. Expression of Zic3 is first detected in prospective neural plate region at gastrulation. Onset of the expression was earlier than most proneural genes and followed chordin expression. The expression was induced by blockade of BMP4 signal. Overexpression of Zic3 resulted in hyperplastic neural and neural crest derived tissue. In animal cap explant, the overexpression of Zic3 induced expression of all the proneural genes and neural crest marker genes. These findings suggest that Zic3 can determine the ectodermal cell fate and promote the earliest step of neural and neural crest development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Werner syndrome (WS) is an autosomal recessive disorder characterized by genomic instability and the premature onset of a number of age-related diseases. The gene responsible for WS encodes a member of the RecQ-like subfamily of DNA helicases. Here we show that its murine homologue maps to murine chromosome 8 in a region syntenic with the human WRN gene. We have deleted a segment of this gene and created Wrn-deficient embryonic stem (ES) cells and WS mice. While displaying reduced embryonic survival, live-born WS mice otherwise appear normal during their first year of life. Nonetheless, although several DNA repair systems are apparently intact in homozygous WS ES cells, such cells display a higher mutation rate and are significantly more sensitive to topoisomerase inhibitors (especially camptothecin) than are wild-type ES cells. Furthermore, mouse embryo fibroblasts derived from homozygous WS embryos show premature loss of proliferative capacity. At the molecular level, wild-type, but not mutant, WS protein copurifies through a series of centrifugation and chromatography steps with a multiprotein DNA replication complex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ALL-1 gene positioned at 11q23 is directly involved in human acute leukemia either through a variety of chromosome translocations or by partial tandem duplications. ALL-1 is the human homologue of Drosophila trithorax which plays a critical role in maintaining proper spatial and temporal expression of the Antennapedia-bithorax homeotic genes determining the fruit fly’s body pattern. Utilizing specific antibodies, we found that the ALL-1 protein distributes in cultured cells in a nuclear punctate pattern. Several chimeric ALL-1 proteins encoded by products of the chromosome translocations and expressed in transfected cells showed similar speckles. Dissection of the ALL-1 protein identified within its ≈1,100 N-terminal residues three polypeptides directing nuclear localization and at least two main domains conferring distribution in dots. The latter spanned two short sequences conserved with TRITHORAX. Enforced nuclear expression of other domains of ALL-1, such as the PHD (zinc) fingers and the SET motif, resulted in uniform nonpunctate patterns. This indicates that positioning of the ALL-1 protein in subnuclear structures is mediated via interactions of ALL-1 N-terminal elements. We suggest that the speckles represent protein complexes which contain multiple copies of the ALL-1 protein and are positioned at ALL-1 target sites on the chromatin. Therefore, the role of the N-terminal portion of ALL-1 is to direct the protein to its target genes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A two-hybrid screen was used to identify Saccharomyces cerevisiae genes encoding proteins that interact with MSH2. One gene was found to encode a homologue of Schizosaccharomyces pombe EXO1, a double-stranded DNA-specific 5′–3′ exonuclease. S. cerevisiae EXO1 interacted with both S. cerevisiae and human MSH2 in two-hybrid and coimmunoprecipitation experiments. exo1 mutants showed a mutator phenotype, and epistasis analysis was consistent with EXO1 functioning in the MSH2-dependent mismatch repair pathway. exo1 mutations were lethal in combination with rad27 mutations, and overexpression of EXO1 suppressed both the temperature sensitive and mutator phenotypes of rad27 mutants.