995 resultados para trench
Resumo:
Dismembered ophiolitic rocks including abundant sheared, serpentinized peridotite (mostly harzburgite) and minor basalts, dolerites, gabbros, and altered metabasites (mainly altered amphibolite) were drilled at most of the sites on the upper to lower Middle America Trench landward slope off Guatemala during Leg 84 of the Deep Sea Drilling Project. These rocks show characteristic Cataclastic deformation with zeolite facies metamorphism and alteration after amphibolite and greenschist facies metamorphism. These features indicate that the rocks originated in mid-oceanic ridge, offridge, and possibly other areas including island arc areas and were metamorphosed under a high geothermal gradient at low pressure. They were then structurally deformed and mixed within a serpentinite melange. Such ophiolite melanges may have been emplaced onto the Trench landward slope area during the initiation of subduction of the Cocos Plate. The emplacement seems to be connected to that of the Nicoya Complex in Costa Rica. The slope cover from early Eocene to Recent shows no history of these metamorphic and deformational events, therefore the emplacement of the dismembered ophiolitic rocks occurred at least before the early Eocene. The dismembered ophiolite-based Trench landward slope off Guatemala is a newly documented style of subduction, which has also recently been found at the easternmost edge of the Philippine Sea Plate along the Izu-Mariana-Yap Trench landward slope.
Resumo:
Seven sites drilled in the central New Hebrides Island Arc during Ocean Drilling Program Leg 134 yielded varying quantities of upper Eocene through Pleistocene calcareous nannofossils. Most of the Miocene and Pliocene strata were absent from Sites 827-831 drilled along the collisional boundary between the Australia and Pacific plates where the North d'Entrecasteaux Ridge and Bougainville Guyot are being subducted. Sites 832 and 833, drilled in the intra-arc North Aoba Basin, contained upper Miocene through Pleistocene and early Pliocene through Pleistocene nannofossils, respectively. Detailed range charts displaying species abundances and age interpretations are presented for all of the sites. Despite problems of reworked assemblages, poor preservation, overgrowths and/or dilution from volcaniclastics, the nannofossil biostratigraphy delineates several repeated sections at Site 829 in the accretionary prism adjacent to Espiritu Santo Island. Paleogene pelagic sediments equivalent to those in a reference section at Site 828 appear to have been scraped from the downgoing North d'Entrecasteaux Ridge and accreted onto the forearc during the Pleistocene. Other sediments in the forearc include Pleistocene olistostromal trench-fill deposits containing clasts of various ages and compositions. Some of the clasts and olistoliths have affinities to rocks exposed on the neighboring islands and environs, whereas others are of uncertain origin. The matrix of the olistostromes is predominately Pleistocene, however, matrices of mixed nannofossil ages are frequently encountered. Comparisons of the mixed nannofossil ages in the matrices with sedimentological and structural data suggest that sediment mixing resulting from fault movement is subordinate to that occurring during deposition.
Resumo:
Species of Globorotalia are among the most dissolution-resistant planktonic foraminifers in sediments of the inner wall of the Middle America Trench; parts of their Phylogenetic history have been recognized in sediments of Leg 107 (Glacon and Bourgois, 1985). These species can be integrated into the biostratigraphic scheme on the basis of calcareous and siliceous nannoplankton and calibrated on the basis of paleomagnetism (Keller, 1980, 1981; Keller et al., 1982; Barron and Keller, 1982). Data compiled for this data report extend to the southern area of occurrence of Globorotalia species. About 250 sediment samples were collected on board JOIDES Resolution and examined as follows: 20-cm**3 samples were dried for 8 hr at 60°C, weighed, and then washed through sieves of 0.5, 0.2, 0.125, and 0.063 mm mesh size. The residues were dried and reweighed. The abundance of planktonic foraminifers counted is reported as numbers of specimens per weight of the original sample.
Resumo:
Secondary minerals in basalts from Holes 495 and 500 include smectite and chlorite, both of which have partially replaced the basalt groundmass. In addition to these two minerals, amphibole, laumontite, albite, and a corrensitelike mineral are present in Holes 499B and 499C. Smectite, chlorite, talc, calcite, phillipsite, mica, and mixed-layer chlorite-montmorillonite also fill veins in the basalts of Hole 495. The secondary mineral assemblages from Site 499 are characteristic of the initial stage of greenschist facies metamorphism.
Resumo:
The southward passage of the Rivera triple junction and its effect on the North American plate are primary controls on the Miocene tectonic evolution of the outer borderland of California. Detrital modes of sand shed off the Patton Ridge and cored by the Deep Sea Drilling Project provide evidence of progressive tectonic erosion of the Patton accretionary prism and neartrench volcanism. Volcanic glass in the sediment is predominantly calcalkaline rhyolite and andesite, typical of subductionrelated volcanism, but also includes minor low-K2O tholeiitic basalt. We attribute these compositional features to interaction with a spreading ridge associated with a possible trench-ridge-trench triple junction along the Patton Escarpment from 18 to 16 Ma. This study suggests that evidence of ridge-trench interaction may be commonly preserved along submerged plate margins, in contrast to its more limited recognition and discussion in the literature based on exposed examples in Chile, Japan and Alaska.
Latest Oligocene through early middle Miocene diatom biostratigraphy of the eastern tropical Pacific
Resumo:
Study of DSDP Sites 71, 77, and 495 has allowed the development of a refined diatom biostratigraphy for the latest Oligocene through early middle Miocene of the eastern tropical Pacific which is well correlated to the low-latitude zonations for planktonic foraminifers, coccoliths, and radiolarians. Six zones and 7 subzones are proposed, and correlation with high-latitude diatoms zonations for the North Pacific, the Norwegian Sea, and the Southern Ocean is suggested by the discovery of selected diatoms in these tropical sediments which were previously thought to be restricted to high latitudes. Six new species and one new variety of diatoms which are stratigraphically useful are proposed : Actinocyclus hajosiae, n. sp., A. radionovae, n. sp., Coscinodiscus blysmos, n. sp., C. praenodulifer, n. sp., Craspedodiscus rydei, n. sp., Thalassiosira bukryi, n. sp., and Coscinodiscus lewisianus var. robustus n. var.