979 resultados para travel mode choice
Resumo:
Road pricing has emerged as an effective means of managing road traffic demand while simultaneously raising additional revenues to transportation agencies. Research on the factors that govern travel decisions has shown that user preferences may be a function of the demographic characteristics of the individuals and the perceived trip attributes. However, it is not clear what are the actual trip attributes considered in the travel decision- making process, how these attributes are perceived by travelers, and how the set of trip attributes change as a function of the time of the day or from day to day. In this study, operational Intelligent Transportation Systems (ITS) archives are mined and the aggregated preferences for a priced system are extracted at a fine time aggregation level for an extended number of days. The resulting information is related to corresponding time-varying trip attributes such as travel time, travel time reliability, charged toll, and other parameters. The time-varying user preferences and trip attributes are linked together by means of a binary choice model (Logit) with a linear utility function on trip attributes. The trip attributes weights in the utility function are then dynamically estimated for each time of day by means of an adaptive, limited-memory discrete Kalman filter (ALMF). The relationship between traveler choices and travel time is assessed using different rules to capture the logic that best represents the traveler perception and the effect of the real-time information on the observed preferences. The impact of travel time reliability on traveler choices is investigated considering its multiple definitions. It can be concluded based on the results that using the ALMF algorithm allows a robust estimation of time-varying weights in the utility function at fine time aggregation levels. The high correlations among the trip attributes severely constrain the simultaneous estimation of their weights in the utility function. Despite the data limitations, it is found that, the ALMF algorithm can provide stable estimates of the choice parameters for some periods of the day. Finally, it is found that the daily variation of the user sensitivities for different periods of the day resembles a well-defined normal distribution.
Hospitality Graduate Students’ Program Choice Decisions: Implications for Faculty and Administrators
Resumo:
Despite rapid growth in the quality and volume of hospitality graduate research and education in recent years, little information is available in the extant body of literature about the program choices of hospitality management graduate students, information that is crucial for program administrators and faculty in their attempts to attract the most promising students to their programs. This paper reports on a study among graduate students in U.S, hospitality management programs designed to understand why they chose to pursue their degrees at their programs of choice. Given the large numbers of international students presently enrolled, the study additionally looked into why international hospitality management students chose to leave their home countries and why they decided to pursue a graduate degree in the U.S. Based on the findings, implications for hospitality administrators and faculty in the U.S. and abroad are discussed and directions for future research are presented.
Resumo:
The extant literature had studied the determinants of the firms’ location decisions with help of host country characteristics and distances between home and host countries. Firm resources and its internationalization strategies had found limited attention in this literature. To address this gap, the research question in this dissertation was whether and how firms’ resources and internationalization strategies impacted the international location decisions of emerging market firms. To explore the research question, data were hand-collected from Indian software firms on their location decisions taken between April 2000 and March 2009. To analyze the multi-level longitudinal dataset, hierarchical linear modeling was used. The results showed that the internationalization strategies, namely market-seeking or labor-seeking had direct impact on firms’ location decision. This direct relationship was moderated by firm resource which, in case of Indian software firms, was the appraisal at CMMI level-5. Indian software firms located in developed countries with a market-seeking strategy and in emerging markets with a labor-seeking strategy. However, software firms with resource such as CMMI level-5 appraisal, when in a labor-seeking mode, were more likely to locate in a developed country over emerging market than firms without the appraisal. Software firms with CMMI level-5 appraisal, when in market-seeking mode, were more likely to locate in a developed country over an emerging market than firms without the appraisal. It was concluded that the internationalization strategies and resources of companies predicted their location choices, over and above the variables studied in the theoretical field of location determinants.
Resumo:
People go through their life making all kinds of decisions, and some of these decisions affect their demand for transportation, for example, their choices of where to live and where to work, how and when to travel and which route to take. Transport related choices are typically time dependent and characterized by large number of alternatives that can be spatially correlated. This thesis deals with models that can be used to analyze and predict discrete choices in large-scale networks. The proposed models and methods are highly relevant for, but not limited to, transport applications. We model decisions as sequences of choices within the dynamic discrete choice framework, also known as parametric Markov decision processes. Such models are known to be difficult to estimate and to apply to make predictions because dynamic programming problems need to be solved in order to compute choice probabilities. In this thesis we show that it is possible to explore the network structure and the flexibility of dynamic programming so that the dynamic discrete choice modeling approach is not only useful to model time dependent choices, but also makes it easier to model large-scale static choices. The thesis consists of seven articles containing a number of models and methods for estimating, applying and testing large-scale discrete choice models. In the following we group the contributions under three themes: route choice modeling, large-scale multivariate extreme value (MEV) model estimation and nonlinear optimization algorithms. Five articles are related to route choice modeling. We propose different dynamic discrete choice models that allow paths to be correlated based on the MEV and mixed logit models. The resulting route choice models become expensive to estimate and we deal with this challenge by proposing innovative methods that allow to reduce the estimation cost. For example, we propose a decomposition method that not only opens up for possibility of mixing, but also speeds up the estimation for simple logit models, which has implications also for traffic simulation. Moreover, we compare the utility maximization and regret minimization decision rules, and we propose a misspecification test for logit-based route choice models. The second theme is related to the estimation of static discrete choice models with large choice sets. We establish that a class of MEV models can be reformulated as dynamic discrete choice models on the networks of correlation structures. These dynamic models can then be estimated quickly using dynamic programming techniques and an efficient nonlinear optimization algorithm. Finally, the third theme focuses on structured quasi-Newton techniques for estimating discrete choice models by maximum likelihood. We examine and adapt switching methods that can be easily integrated into usual optimization algorithms (line search and trust region) to accelerate the estimation process. The proposed dynamic discrete choice models and estimation methods can be used in various discrete choice applications. In the area of big data analytics, models that can deal with large choice sets and sequential choices are important. Our research can therefore be of interest in various demand analysis applications (predictive analytics) or can be integrated with optimization models (prescriptive analytics). Furthermore, our studies indicate the potential of dynamic programming techniques in this context, even for static models, which opens up a variety of future research directions.
Resumo:
People go through their life making all kinds of decisions, and some of these decisions affect their demand for transportation, for example, their choices of where to live and where to work, how and when to travel and which route to take. Transport related choices are typically time dependent and characterized by large number of alternatives that can be spatially correlated. This thesis deals with models that can be used to analyze and predict discrete choices in large-scale networks. The proposed models and methods are highly relevant for, but not limited to, transport applications. We model decisions as sequences of choices within the dynamic discrete choice framework, also known as parametric Markov decision processes. Such models are known to be difficult to estimate and to apply to make predictions because dynamic programming problems need to be solved in order to compute choice probabilities. In this thesis we show that it is possible to explore the network structure and the flexibility of dynamic programming so that the dynamic discrete choice modeling approach is not only useful to model time dependent choices, but also makes it easier to model large-scale static choices. The thesis consists of seven articles containing a number of models and methods for estimating, applying and testing large-scale discrete choice models. In the following we group the contributions under three themes: route choice modeling, large-scale multivariate extreme value (MEV) model estimation and nonlinear optimization algorithms. Five articles are related to route choice modeling. We propose different dynamic discrete choice models that allow paths to be correlated based on the MEV and mixed logit models. The resulting route choice models become expensive to estimate and we deal with this challenge by proposing innovative methods that allow to reduce the estimation cost. For example, we propose a decomposition method that not only opens up for possibility of mixing, but also speeds up the estimation for simple logit models, which has implications also for traffic simulation. Moreover, we compare the utility maximization and regret minimization decision rules, and we propose a misspecification test for logit-based route choice models. The second theme is related to the estimation of static discrete choice models with large choice sets. We establish that a class of MEV models can be reformulated as dynamic discrete choice models on the networks of correlation structures. These dynamic models can then be estimated quickly using dynamic programming techniques and an efficient nonlinear optimization algorithm. Finally, the third theme focuses on structured quasi-Newton techniques for estimating discrete choice models by maximum likelihood. We examine and adapt switching methods that can be easily integrated into usual optimization algorithms (line search and trust region) to accelerate the estimation process. The proposed dynamic discrete choice models and estimation methods can be used in various discrete choice applications. In the area of big data analytics, models that can deal with large choice sets and sequential choices are important. Our research can therefore be of interest in various demand analysis applications (predictive analytics) or can be integrated with optimization models (prescriptive analytics). Furthermore, our studies indicate the potential of dynamic programming techniques in this context, even for static models, which opens up a variety of future research directions.
Resumo:
vol.I. Introduction to Athyrium.--vol.II. Blechnum to Nothochlaena.--vol.III. Ochropteris to Woodwardia, and Selaginella.
Resumo:
Tese (doutorado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Civil e Ambiental, 2016.
Resumo:
Electoral researchers are so much accustomed to analyzing the choice of the single most preferred party as the left-hand side variable of their models of electoral behavior that they often ignore revealed preference data. Drawing on random utility theory, their models predict electoral behavior at the extensive margin of choice. Since the seminal work of Luce and others on individual choice behavior, however, many social science disciplines (consumer research, labor market research, travel demand, etc.) have extended their inventory of observed preference data with, for instance, multiple paired comparisons, complete or incomplete rankings, and multiple ratings. Eliciting (voter) preferences using these procedures and applying appropriate choice models is known to considerably increase the efficiency of estimates of causal factors in models of (electoral) behavior. In this paper, we demonstrate the efficiency gain when adding additional preference information to first preferences, up to full ranking data. We do so for multi-party systems of different sizes. We use simulation studies as well as empirical data from the 1972 German election study. Comparing the practical considerations for using ranking and single preference data results in suggestions for choice of measurement instruments in different multi-candidate and multi-party settings.
Resumo:
Free-riding behaviors exist in tourism and they should be analyzed from a comprehensive perspective; while the literature has mainly focused on free riders operating in a destination, the destinations themselves might also free ride when they are under the umbrella of a collective brand. The objective of this article is to detect potential free-riding destinations by estimating the contribution of the different individual destinations to their collective brands, from the point of view of consumer perception. We argue that these individual contributions can be better understood by reflecting the various stages that tourists follow to reach their final decision. A hierarchical choice process is proposed in which the following choices are nested (not independent): “whether to buy,” “what collective brand to buy,” and “what individual brand to buy.” A Mixed Logit model confirms this sequence, which permits estimation of individual contributions and detection of free riders.
Resumo:
Objective: The aims of this thesis were to analyze the application mode of the universal adhesives (UA) and to give instructions for clinical procedures. The etching mode of UA on the bond strength to dentin and on the risk of retention, marginal discoloration, marginal adaptation and post-operative sensitivity (POS) was analyzed by two systematic reviews. Three in vitro studies were conducted: 1) evaporation mode of a UA on coronal dentin; 2) cementation approach on radicular dentin; 3) adhesion of metal brackets to enamel. Materials and methods: Two systematic review were conducted firstly, then in vitro study to investigate the evaporation mode in presence or not of pulpal pressure by means of μTBS, and the enzymatic activity using in situ zymography, at T0 and T6. The cementation of a fiber into radicular dentin with different resin-cements was studied, by push-out bond strength evaluation. Orthodontic brackets were cemented according to 4 adhesive protocols and shear bond strength test was conducted. Two adhesive removal techniques were evaluated, and spectrophotometry was used. Results: The probability of POS occurrence was less in SE. SEE approach seems to perform better than SE. Air-drying resulted in higher μTBS. Suction-evaporation, aging and ER mode increased MMPs activity. Differences in NL expression were present at T0 for fiber post study, and the aging produced an increase in marginal infiltration. Brackets cemented with new universal cement with previous etchant application showed good μTBS values. Conclusion: SEE performed better than SE and TE with UA in terms of uTBS. Evaporating with air-drying is better for UA in terms of uTBS and enzymatic activity. Aging and choice of resin cement for cementation of fiber posts influenced the PBS. Brackets cementation with a new resin- cement seems to offer the highest bond strength and leaves more cement remnants after the bracket removal.
Resumo:
This dissertation analyzes the exploitation of the orbital angular momentum (OAM) of the electromagnetic waves with large intelligent surfaces in the near-field region and line-of-sight conditions, in light of the holographic MIMO communication concept. Firstly, a characterization of the OAM-based communication problem is presented, and the relationship between OAM-carrying waves and communication modes is discussed. Then, practicable strategies for OAM detection using large intelligent surfaces and optimization methods based on beam focusing are proposed. Numerical results characterize the effectiveness of OAM with respect to other strategies, also including the proposed detection and optimization methods. It is shown that OAM waves constitute a particular choice of communication modes, i.e., an alternative basis set, which is sub-optimum with respect to optimal basis functions that can be derived by solving eigenfunction problems. Moreover, even the joint utilization of OAM waves with focusing strategies led to the conclusion that no channel capacity achievements can be obtained with these transmission techniques.
Resumo:
Disconnectivity between the Default Mode Network (DMN) nodes can cause clinical symptoms and cognitive deficits in Alzheimer׳s disease (AD). We aimed to examine the structural connectivity between DMN nodes, to verify the extent in which white matter disconnection affects cognitive performance. MRI data of 76 subjects (25 mild AD, 21 amnestic Mild Cognitive Impairment subjects and 30 controls) were acquired on a 3.0T scanner. ExploreDTI software (fractional Anisotropy threshold=0.25 and the angular threshold=60°) calculated axial, radial, and mean diffusivities, fractional anisotropy and streamline count. AD patients showed lower fractional anisotropy (P=0.01) and streamline count (P=0.029), and higher radial diffusivity (P=0.014) than controls in the cingulum. After correction for white matter atrophy, only fractional anisotropy and radial diffusivity remained significantly lower in AD compared to controls (P=0.003 and P=0.05). In the parahippocampal bundle, AD patients had lower mean and radial diffusivities (P=0.048 and P=0.013) compared to controls, from which only radial diffusivity survived for white matter adjustment (P=0.05). Regression models revealed that cognitive performance is also accounted for by white matter microstructural values. Structural connectivity within the DMN is important to the execution of high-complexity tasks, probably due to its relevant role in the integration of the network.
Resumo:
The search for an Alzheimer's disease (AD) biomarker is one of the most relevant contemporary research topics due to the high prevalence and social costs of the disease. Functional connectivity (FC) of the default mode network (DMN) is a plausible candidate for such a biomarker. We evaluated 22 patients with mild AD and 26 age- and gender-matched healthy controls. All subjects underwent resting functional magnetic resonance imaging (fMRI) in a 3.0 T scanner. To identify the DMN, seed-based FC of the posterior cingulate was calculated. We also measured the sensitivity/specificity of the method, and verified a correlation with cognitive performance. We found a significant difference between patients with mild AD and controls in average z-scores: DMN, whole cortical positive (WCP) and absolute values. DMN individual values showed a sensitivity of 77.3% and specificity of 70%. DMN and WCP values were correlated to global cognition and episodic memory performance. We showed that individual measures of DMN connectivity could be considered a promising method to differentiate AD, even at an early phase, from normal aging. Further studies with larger numbers of participants, as well as validation of normal values, are needed for more definitive conclusions.
Resumo:
The experiences induced by psychedelics share a wide variety of subjective features, related to the complex changes in perception and cognition induced by this class of drugs. A remarkable increase in introspection is at the core of these altered states of consciousness. Self-oriented mental activity has been consistently linked to the Default Mode Network (DMN), a set of brain regions more active during rest than during the execution of a goal-directed task. Here we used fMRI technique to inspect the DMN during the psychedelic state induced by Ayahuasca in ten experienced subjects. Ayahuasca is a potion traditionally used by Amazonian Amerindians composed by a mixture of compounds that increase monoaminergic transmission. In particular, we examined whether Ayahuasca changes the activity and connectivity of the DMN and the connection between the DMN and the task-positive network (TPN). Ayahuasca caused a significant decrease in activity through most parts of the DMN, including its most consistent hubs: the Posterior Cingulate Cortex (PCC)/Precuneus and the medial Prefrontal Cortex (mPFC). Functional connectivity within the PCC/Precuneus decreased after Ayahuasca intake. No significant change was observed in the DMN-TPN orthogonality. Altogether, our results support the notion that the altered state of consciousness induced by Ayahuasca, like those induced by psilocybin (another serotonergic psychedelic), meditation and sleep, is linked to the modulation of the activity and the connectivity of the DMN.
Resumo:
The aim of this study was to analyze the conceptions that hearing mothers of deaf children have about deafness and relate it to the language mode used by the mother and the child. We interviewed 10 mothers of deaf children, five of whom were prescholars and five of school age. The content was analyzed as to thematic and category types, with emphasis on the categories conception of deafness and choice of language mode . Data analysis showed that one mother seems to see deafness as a disease, another as a difference and the other mothers were found to be somewhere between these two views. In relation to the preferred language mode, half the mothers reported that their children predominantly use signs, the other half uses speech and signs, with the exception of one child who uses only speech. The child whose mother acts as if deafness is a disease uses speech while another one whose mother acts as if deafness is a difference uses speech as well as signs.