965 resultados para transmission electron microscope methods


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glasses containing metallic nanoparticles are promising materials for technological applications in optics and photonics. Although several methods are available to generate nanoparticles in glass, only femtosecond lasers allow controlling it three-dimensionally. In this direction, the present work investigates the generation of copper nanoparticles on the surface and in the bulk of a borosilicate glass by fs-laser irradiation. We verified the formation of copper nanoparticles, after heat treatment, by UV-Vis absorption, transmission electron microscopy and electron diffraction. A preferential growth of copper nanoparticles was observed in the bottom of the irradiated region, which was attributed to self-focusing in the glass. (c) 2012 Optical Society of America

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A comprehensive study of pulsed nitriding in AISI H13 tool steel at low temperature (400 degrees C) is reported for several durations. X-ray diffraction results reveal that a nitrogen enriched compound (epsilon-Fe2-3N, iron nitride) builds up on the surface within the first process hour despite the low process temperature. Beneath the surface, X-ray Wavelength Dispersive Spectroscopy (WDS) in a Scanning Electron Microscope (SEM) indicates relatively higher nitrogen concentrations (up to 12 at.%) within the diffusion layer while microscopic nitrides are not formed and existing carbides are not dissolved. Moreover, in the diffusion layer, nitrogen is found to be dispersed in the matrix and forming nanosized precipitates. The small coherent precipitates are observed by High-Resolution Transmission Electron Microscopy (HR-TEM) while the presence of nitrogen is confirmed by electron energy loss spectroscopy (EELS). Hardness tests show that the material hardness increases linearly with the nitrogen concentration, reaching up to 14.5 GPa in the surface while the Young Modulus remains essentially unaffected. Indeed, the original steel microstructure is well preserved even in the nitrogen diffusion layer. Nitrogen profiles show a case depth of about similar to 43 mu m after nine hours of nitriding process. These results indicate that pulsed plasma nitriding is highly efficient even at such low temperatures and that at this process temperature it is possible to form thick and hard nitrided layers with satisfactory mechanical properties. This process can be particularly interesting to enhance the surface hardness of tool steels without exposing the workpiece to high temperatures and altering its bulk microstructure. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The umbilical cord blood (UCB) is an important source of hematopoietic stem cells with great deal of interest in regenerative medicine. The UCB cells have been extensively studied as an alternative to the bone marrow transplants. The challenge is to define specific methods to purify and characterize these cells in different animal species. This study is aimed at morphological characterization of progenitor cells derived from UCB highlighting relevant differences with peripheral blood of adult in dog and cats. Therefore, blood was collected from 18 dogs and 5 cats' umbilical cords from fetus in various developmental stages. The mononuclear cells were separated using the gradient of density Histopaque-1077. Characterization of CD34+ cells was performed by flow cytometric analysis and transmission electron microscopy. Granulocytes (ancestry of the basophiles, eosinophiles, and neutrophiles) and agranulocytes (represented by immature lymphocytes) were identified. We showed for the first time the ultrastructural features of cat UCB cells. Microsc. Res. Tech. 75:766770, 2012. (C) 2011 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The bovine yolk sac derives from visceral endoderm and its development occurs between days 18-23 of gestation. The study of this membrane is important for comparative data and has already been performed in rodents, sheep and in cattle, especially Bos taunts. In species Bos indicus the yolk sac has not quite been studied and is believed that there are morphological differences between these species. The yolk sac undergoes a process of involution and degeneration during embryonic development and none vestige of it is found in late gestation. The period in which occurs the involution of the yolk sac coincides with the period of increased pregnancy loss in cattle, and changes in the morphology of this membrane may indicate the reasons for such high loss rates. Thus, considering that the yolk sac is important for embryonic circulation and metabolic transmission, besides participating actively in the process of cattle placentation, this study aimed characterize morphologically the involution of the bovine yolk sac. Materials, Methods & Results: The early gestational period was determined between days 20 and 70 post-insemination (p.i), according to the exterior characteristics of embryo/fetus. For macroscopic analyzes the uterus was dissected to expose the fetal membranes and subsequently the embryo/fetus was photographed. The samples were fixed for light microscopy and transmission electron microscopy. The yolk sac that emerges from the ventral part of the embryo was prominent and composed by a central part with two thin peripheral projections of different lengths. The bovine yolk sac with about 9 cm on day 25 p. i. of pregnancy permanently decreased its total length during this study. Histologically, the yolk sac is composed of three cell layers: the mesothelium, the mesenchyme and the endoderm. In mesenchyme are found blood islets. In the endoderm are formed cells invaginations toward the mesenchyme originating small canaliculi. The ultrastructure of yolk cells presented many mitochondria, rough endoplasmic reticulum, vesicles, euchromatin and the presence of two nucleoli, Discussion: The real first blood circulation in the bovine is attached with the development of yolk sac, differently from other membranes, such as the corium, that does not present evidence of vascularization by the age of 20-30 days. The erythroblasts found in the yolk sac are related to vasculogenesis and the process of differentiation of blood cells during the erythropoiesis. It could be observed on the histology of the yolk sac, in embryos of 30-50 days old, the presence of canaliculi and small folds of the epithelium. The canaliculi collapse is associated with the degeneration of the endoderm wall of the yolk sac. The organelles present in the endoderm cells of the yolk sac are associated with the function of protein metabolism and in the exchange of substances between the mesenchyme and the mesothelium, For these findings, could be observed that the yolk sac epithelium is found active until the 50th day of gestation, and thereafter regresses. However, remnants of this membrane may be present until the 70th day, These features may represent a presence of an active chorionvitelline placenta in this period responsible for the maintenance of pregnancy whereas the chorioallantoic placenta is not definitively established.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to describe and illustrate the morphology of the spermatozoon of the Western Atlantic shrimp, Hippolyte obliquimanus. Individuals were sampled from Itagua Beach (Ubatuba, southern Brazil). The male reproductive system was dissected and morphological analysis was undertaken using a stereomicroscope, a light microscope, and transmission electron and scanning electron microscopes. When viewed from the nuclear or acrosomal poles, each spermatozoon has many translucent radiating arms (about 20) from a denser cell body, while laterally the cell body and arms resemble a "cnidarian medusa", with all the arms projecting away from the bell-like cell body. This sperm morphology is distinct from the "thumbtack"-shaped spermatozoa observed in the majority of carideans but has similarities to the spermatozoa of Rhynchocinetes spp. The morphology of sperm of several species of the genus Hippolyte resembles the spermatozoon of H. obliquimanus with the presence of posterior nuclear arms, but it is necessary to study other Hippolyte species to place these arms in the context of the genus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The characterization of cellular changes that occur during somatic embryogenesis is essential for understanding the factors involved in the transition of somatic cells into embryogenically competent cells and determination of cells and/or tissues involved. The present study describes the anatomical and ultrastructural events that lead to the formation of somatic embryos in the model system of the wild passion fruit (Passiflora cincinnata). Mature zygotic embryos were inoculated in Murashige and Skoog induction media supplemented with 2,4-dichlorophenoxyacetic acid and 6-benzyladenine. Zygotic embryo explants at different development stages were collected and processed by conventional methods for studies using light, scanning, and transmission electron microscopy (TEM). Histochemical tests were used to examine the mobilization of reserves. The differentiation of the somatic embryos began in the abaxial side of the cotyledon region. Protuberances were formed from the meristematic proliferation of the epidermal and mesophyll cells. These cells had large nuclei, dense cytoplasm with a predominance of mitochondria, and a few reserve compounds. The protuberances extended throughout the abaxial surface of the cotyledons. The ongoing differentiation of peripheral cells of these structures led to the formation of proembryogenic zones, which, in turn, dedifferentiated into somatic embryos of multicellular origin. In the initial stages of embryogenesis, the epidermal and mesophyll cells showed starch grains and less lipids and protein reserves than the starting explant. These results provide detailed information on anatomical and ultrastructural changes involved in the acquisition of embryogenic competence and embryo differentiation that has been lacking so far in Passiflora.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The paca is a South American rodent with potential as a commercial food animal. We examined paca placenta as part of a wider effort to understand the reproductive biology of this species. Methods: Thirteen specimens between midgestation and term of pregnancy were studied by light and transmission electron microscopy. Results: The placenta is divided into several lobes separated by interlobular trophoblast. Maternal arterial channels and fetal veins are found at the centre of each lobe. In the labyrinth, maternal blood flows through trophoblast-lined lacunae in close proximity to the fetal capillaries. The interhaemal barrier is of the haemomonochorial type with a single layer of syncytiotrophoblast. Caveolae occur in the apical membrane of the syncytiotrophoblast and recesses in the basal membrane, but there is no evidence of transtrophoblastic channels. The interlobular areas consist of cords of syncytiotrophoblast defining maternal blood channels that drain the labyrinth. Yolk sac endoderm covers much of the fetal surface of the placenta. The subplacenta comprises cytotrophoblast and syncytiotrophoblast. There are dilated intercellular spaces between the cytotrophoblasts and lacunae lined by syncytiotrophoblast. In the junctional zone between subplacenta and decidua, there are nests of multinucleated giant cells with vacuolated cytoplasm. The entire placenta rests on a pedicle of maternal tissue. An inverted yolk sac placenta is also present. The presence of small vesicles and tubules in the apical membrane of the yolk sac endoderm and larger vesicles in the supranuclear region suggest that the yolk sac placenta participates in maternal-fetal transfer of protein. Conclusion: The paca placenta closely resembles that of other hystricomorph rodents. The lobulated structure allows for a larger exchange area and the development of precocial young

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Hystricognath rodents have a lobed placenta, comprising labyrinthine exchange areas and interlobular trophoblast. These correspond to the labyrinthine and spongy zones of other rodent placentae. Beneath them, however, is a structure unique to hystricognath rodents called the subplacenta. We here describe the subplacenta of the red-rumped agouti and examine the possible functional correlates of this structure. Methods: Placentae were collected from early in midgestation to near term of pregnancy and examined by standard histological techniques, immunohistochemistry and transmission electron microscopy. In addition, to study the microvasculature of the subplacenta, vessel casts were inspected by scanning electron microscopy. Results: In the subplacenta, lamellae of connective tissue support a layer of mononuclear cytotrophoblast cells. Beneath this is found syncytiotrophoblast. Clusters of multinuclear giant cells occur in the transition zone between the subplacenta and decidua. There are prominent intercellular spaces between the cytotrophoblast cells. The basal membrane of these cells is often close to fetal blood vessels. The syncytiotrophoblast surrounds an extensive system of lacunae. Microvilli project into these lacunae from the plasma membrane of the syncytiotrophoblast. The syncytial cytoplasm contains electron-dense granules. This is probably the amylase-resistant PAS-positive material identified by histochemistry. The subplacenta is supplied entirely from the fetal circulation. Within it the vessels pursue a tortuous course with sinusoidal dilatations and constrictions. Conclusion: The functions that have been attributed to the subplacenta include hormone production. Our findings are consistent with this interpretation, but suggest that hormone secretion is directed towards the fetal circulation rather than the maternal tissues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background Bat trypanosomes have been implicated in the evolutionary history of the T. cruzi clade, which comprises species from a wide geographic and host range in South America, Africa and Europe, including bat-restricted species and the generalist agents of human American trypanosomosis T. cruzi and T. rangeli. Methods Trypanosomes from bats (Rhinolophus landeri and Hipposideros caffer) captured in Mozambique, southeast Africa, were isolated by hemoculture. Barcoding was carried out through the V7V8 region of Small Subunit (SSU) rRNA and Fluorescent Fragment Length barcoding (FFLB). Phylogenetic inferences were based on SSU rRNA, glyceraldehyde phosphate dehydrogenase (gGAPDH) and Spliced Leader (SL) genes. Morphological characterization included light, scanning and transmission electron microscopy. Results New trypanosomes from bats clustered together forming a clade basal to a larger assemblage called the T. cruzi clade. Barcoding, phylogenetic analyses and genetic distances based on SSU rRNA and gGAPDH supported these trypanosomes as a new species, which we named Trypanosoma livingstonei n. sp. The large and highly polymorphic SL gene repeats of this species showed a copy of the 5S ribosomal RNA into the intergenic region. Unique morphological (large and broad blood trypomastigotes compatible to species of the subgenus Megatrypanum and cultures showing highly pleomorphic epimastigotes and long and slender trypomastigotes) and ultrastructural (cytostome and reservosomes) features and growth behaviour (when co-cultivated with HeLa cells at 37°C differentiated into trypomastigotes resembling the blood forms and do not invaded the cells) complemented the description of this species. Conclusion Phylogenetic inferences supported the hypothesis that Trypanosoma livingstonei n. sp. diverged from a common ancestral bat trypanosome that evolved exclusively in Chiroptera or switched at independent opportunities to mammals of several orders forming the clade T. cruzi, hence, providing further support for the bat seeding hypothesis to explain the origin of T. cruzi and T. rangeli.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Endometrial decidualization and associated extracellular matrix (ECM) remodeling are critical events to the establishment of the maternal-fetal interface and successful pregnancy. Here, we investigated the impact of type 1 diabetes on these processes during early embryonic development, in order to contribute to the understanding of the maternal factors associated to diabetic embryopathies. Methods: Alloxan-induced diabetic Swiss female mice were bred after different periods of time to determine the effects of diabetes progression on the development of gestational complications. Furthermore, the analyses focused on decidual development as well as mRNA expression, protein deposition and ultrastructural organization of decidual ECM. Results: Decreased number of implantation sites and decidual dimensions were observed in the group mated 90-110 days after diabetes induction (D), but not in the 50-70D group. Picrosirius staining showed augmentation in the fibrillar collagen network in the 90e110D group and, following immunohistochemical examination, that this was associated with increase in types I and V collagens and decrease in type III collagen and collagen-associated proteoglycans biglycan and lumican. qPCR, however, demonstrated that only type I collagen mRNA levels were increased in the diabetic group. Alterations in the molecular ratio among distinct collagen types and proteoglycans were associated with abnormal collagen fibrillogenesis, analyzed by transmission electron microscopy. Conclusions: Our results support the concept that the development of pregnancy complications is directly related with duration of diabetes (progression of the disease), and that this is a consequence of both systemic factors (i.e. disturbed maternal endocrine-metabolic profile) and uterine factors, including impaired decidualization and ECM remodeling

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Bat trypanosomes have been implicated in the evolutionary history of the T. cruzi clade, which comprises species from a wide geographic and host range in South America, Africa and Europe, including bat-restricted species and the generalist agents of human American trypanosomosis T. cruzi and T. rangeli. METHODS: Trypanosomes from bats (Rhinolophus landeri and Hipposideros caffer) captured in Mozambique, southeast Africa, were isolated by hemoculture. Barcoding was carried out through the V7V8 region of Small Subunit (SSU) rRNA and Fluorescent Fragment Length barcoding (FFLB). Phylogenetic inferences were based on SSU rRNA, glyceraldehyde phosphate dehydrogenase (gGAPDH) and Spliced Leader (SL) genes. Morphological characterization included light, scanning and transmission electron microscopy. RESULTS: New trypanosomes from bats clustered together forming a clade basal to a larger assemblage called the T. cruzi clade. Barcoding, phylogenetic analyses and genetic distances based on SSU rRNA and gGAPDH supported these trypanosomes as a new species, which we named Trypanosoma livingstonei n. sp. The large and highly polymorphic SL gene repeats of this species showed a copy of the 5S ribosomal RNA into the intergenic region. Unique morphological (large and broad blood trypomastigotes compatible to species of the subgenus Megatrypanum and cultures showing highly pleomorphic epimastigotes and long and slender trypomastigotes) and ultrastructural (cytostome and reservosomes) features and growth behaviour (when co-cultivated with HeLa cells at 37°C differentiated into trypomastigotes resembling the blood forms and do not invaded the cells) complemented the description of this species. CONCLUSION: Phylogenetic inferences supported the hypothesis that Trypanosoma livingstonei n. sp. diverged from a common ancestral bat trypanosome that evolved exclusively in Chiroptera or switched at independent opportunities to mammals of several orders forming the clade T. cruzi, hence, providing further support for the bat seeding hypothesis to explain the origin of T. cruzi and T. rangeli.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In der vorliegenden Arbeit wurden verschiedene Topologien von Polymakromonomeren auf unterschiedlichen chemischen Routen synthetisiert und mit verschiedenen Methoden charakterisiert. Es wurden Polyalkylmakromonomere, Kern-Schale zylindrische Bürsten (Poly[styrol-block-alkylmakromonomere]), Polystyrolmakromonomere und Blockcopolymere aus zylindrischer Polystyrolbürste und linearem t--BuMA--Knäuel synthetisiert. Die Synthese der Polyalkylmakromonomere und der Kern--Schale zylindrischen Bürsten wurde durch die freie radikalische Polymerisation von Makromonomeren erreicht. Die unterschiedlichen Eigenschaften der Polymakromonomere wurden mit verschiedenen Methoden (Lichtstreuung, Neutronenstreuung, DSC, AFM und NMR) untersucht. Die metalloceninitiierte Polymerisation von Polystyrolmakromonomeren führte zum ersten Mal zu Polymerisationsgraden der Hauptkette von mehr als 1000, so dass eine neue chemische Route zur Synthese von zylindrischen Bürsten entwickelt werden konnte. Die partiell lebende metalloceninitiierte Polymerisation erlaubt weiterhin zum ersten Mal die Synthese von Blockstrukturen, die einen zylindrischen Bürstenteil und einen linearen Knäuelteil (t--BuMA) aufweisen. Diese Blockcopolymere bilden nach Abspaltung der tert.--Butylgruppe und Neutralisation der freien Polymethacrylsäure mit Cäsiumhydroxid ein sehr großes Amphiphil, das in einem selektiven Lösungsmittel (z.~B. THF) eine mizellare überstruktur ausbildet. Der mizellare Charakter dieser überstrukturen wurde mit der hochauflösenden Transmissionselektronenmikroskopie/EDX bewiesen. Der mit der TEM beobachtete Durchmesser einer solchen Riesenmizelle erreicht Werte von bis zu 300 nm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here, we present the adaptation and optimization of (i) the solvothermal and (ii) the metal-organic chemical vapor deposition (MOCVD) approach as simple methods for the high-yield synthesis of MQ2 (M=Mo, W, Zr; Q = O, S) nanoparticles. Extensive characterization was carried out using X-ray diffraction (XRD), scanning and transmission electron micros¬copy (SEM/TEM) combined with energy dispersive X-ray analysis (EDXA), Raman spectroscopy, thermal analyses (DTA/TG), small angle X-ray scattering (SAXS) and BET measurements. After a general introduction to the state of the art, a simple route to nanostructured MoS2 based on the decomposition of the cluster-based precursor (NH4)2Mo3S13∙xH2O under solvothermal conditions (toluene, 653 K) is presented. Solvothermal decomposition results in nanostructured material that is distinct from the material obtained by decomposition of the same precursor in sealed quartz tubes at the same temperature. When carried out in the presence of the surfactant cetyltrimethyl¬ammonium bromide (CTAB), the decomposition product exhibits highly disordered MoS2 lamellae with high surface areas. The synthesis of WS2 onion-like nanoparticles by means of a single-step MOCVD process is discussed. Furthermore, the results of the successful transfer of the two-step MO¬CVD based synthesis of MoQ2 nanoparticles (Q = S, Se), comprising the formation of amorphous precursor particles and followed by the formation of fullerene-like particles in a subsequent annealing step to the W-S system, are presented. Based on a study of the temperature dependence of the reactions a set of conditions for the formation of onion-like structures in a one-step reaction could be derived. The MOCVD approach allows a selective synthesis of open and filled fullerene-like chalcogenide nanoparticles. An in situ heating stage transmission electron microscopy (TEM) study was employed to comparatively investigate the growth mechanism of MoS2 and WS2 nanoparticles obtained from MOCVD upon annealing. Round, mainly amorphous particles in the pristine sample trans¬form to hollow onion-like particles upon annealing. A significant difference between both compounds could be demonstrated in their crystallization conduct. Finally, the results of the in situ hea¬ting experiments are compared to those obtained from an ex situ annealing process under Ar. Eventually, a low temperature synthesis of monodisperse ZrO2 nanoparticles with diameters of ~ 8 nm is introduced. Whereas the solvent could be omitted, the synthesis in an autoclave is crucial for gaining nano-sized (n) ZrO2 by thermal decomposition of Zr(C2O4)2. The n-ZrO2 particles exhibits high specific surface areas (up to 385 m2/g) which make them promising candidates as catalysts and catalyst supports. Co-existence of m- and t-ZrO2 nano-particles of 6-9 nm in diameter, i.e. above the critical particle size of 6 nm, demonstrates that the particle size is not the only factor for stabilization of the t-ZrO2 modification at room temperature. In conclusion, synthesis within an autoclave (with and without solvent) and the MOCVD process could be successfully adapted to the synthesis of MoS2, WS2 and ZrO2 nanoparticles. A comparative in situ heating stage TEM study elucidated the growth mechanism of MoS2 and WS2 fullerene-like particles. As the general processes are similar, a transfer of this synthesis approach to other layered transition metal chalcogenide systems is to be expected. Application of the obtained nanomaterials as lubricants (MoS2, WS2) or as dental filling materials (ZrO2) is currently under investigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present work, the formation and migration of point defects induced by electron irradiation in carbon nanostructures, including carbon onions, nanotubes and graphene layers, were investigated by in-situ TEM. The mobility of carbon atoms normal to the layers in graphitic nanoparticles, the mobility of carbon interstitials inside SWCNTs, and the migration of foreign atoms in graphene layers or in layers of carbon nanotubes were studied. The diffusion of carbon atoms in carbon onions was investigated by annealing carbon onions and observing the relaxation of the compressed clusters in the temperature range of 1200 – 2000oC. An activation energy of 5.0±0.3 eV was obtained. This rather high activation energy for atom exchange between the layers not only prevents the exchange of carbon atoms between the layers at lower temperature but also explains the high morphological and mechanical stability of graphite nanostructures. The migration of carbon atoms in SWCNTs was investigated quantitatively by cutting SWCNT bundles repeatedly with a focused electron beam at different temperatures. A migration barrier of about 0.25 eV was obtained for the diffusion of carbon atoms inside SWCNTs. This is an experimental confirmation of the high mobility of interstitial atoms inside carbon nanotubes, which corroborates previously developed theoretical models of interstitial diffusivity. Individual Au and Pt atoms in one- or two-layered graphene planes and MWCNTs were monitored in real time at high temperatures by high-resolution TEM. The direct observation of the behavior of Au and Pt atoms in graphenic structures in a temperature range of 600 – 700°C allows us to determine the sites occupied by the metal atoms in the graphene layer and the diffusivities of the metal atoms. It was found that metal atoms were located in single or multiple carbon vacancies, not in off-plane positions, and diffused by site exchange with carbon atoms. Metal atoms showed a tendency to form clusters those were stable for a few seconds. An activation energy of around 2.5 eV was obtained for the in-plane migration of both Au and Pt atoms in graphene (two-dimensional diffusion). The rather high activation energy indicates covalent bonding between metal and carbon atoms. Metal atoms were also observed to diffuse along the open edge of graphene layers (one-dimensional diffusion) with a slightly lower activation energy of about 2.3 eV. It is also found that the diffusion of metal atoms in curved graphenic layers of MWCNTs is slightly faster than in planar graphene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this thesis was to increase the functionality of pristine DNA scaffolds by functionalizing them with fluorescent dyes and hydrophobic moieties. Two important steps were necessary to realize this aim successfully. First, nucleic acids needed to be synthesized making use of multidisciplinary toolbox for the generation and manipulation of polynucleic acids. The most important techniques were the solid phase synthesis involving the incorporation of standard and modified phosphoramidite building blocks as well as molecular biology procedures like the polymerase chain reaction, the bacterial amplification of plasmids and the enzymatic digestion of circular vectors. Second, and evenly important, was the characterization of the novel bioorganic hybrid structures by a multitude of techniques, especially optical measurements. For studying DNA-dye conjugates methods like UV/Vis and photoluminescence spectroscopy as well as time resolved luminescence spectroscopy were utilized. While these measurements characterized the bulk behavior of an ensemble of DNA-dye hybrids it was necessary for a complete understanding of the systems to look at single structures. This was done by single-molecule fluorescence spectroscopy and fluorescence correlation spectroscopy. For complete analysis the optical experiments were complemented by direct visualization techniques, i.e. high resolution transmission electron microscopy and scanning force microscopy.