923 resultados para titanium dioxide
Resumo:
This project aimed at understanding the molecular mechanisms involved in the superior integration of micro-roughened titanium implant surfaces with the surrounding bone, when compared with their smooth surfaces. It involved studying the role of microRNAs and cell signaling pathways in the molecular regulation of bone cells on topographically modified titanium dental implants. The findings suggest a highly regulated microRNA-mediated control of molecular mechanisms during the process of bone formation that may be responsible for the superior osseointegration properties on micro-roughened titanium implant surfaces and indicate the possibility of using microRNA modulators to enhance osseointegration in clinically demanding circumstances.
Resumo:
Considerable discussion has taken place during the last decade regarding the role of economic growth in determining environmental quality. Using data from 30 OECD countries for the period 1960-2003 and the nonparametric method of generalized additive models, which enables us to use flexible functional forms, this paper examines the environmental Kuznets curve hypothesis for carbon dioxide (CO2). We find that the reduction of coal share in energy use has a significant effect on CO2. Our results imply that economic growth is not sufficient to decrease CO2 emissions.
Resumo:
We propose a productivity index for undesirable outputs such as carbon dioxide (CO2) and sulfur dioxide (SO2) emissions and measure it using data from 51 developed and developing countries over the period 1971-2000. About half of the countries exhibit the productivity growth. The changes in the productivity index are linked with their respective per capita income using a semi-parametric model. Our results show technological catch up of low-income countries. However, overall productivities both of SO2 and CO2 show somewhat different results.
Resumo:
The US Clean Air Act Amendments introduce an emissions trading system to regulate SO2 emissions. This study finds that changes in SO2 emissions prices are related to innovations induced by these amendments. We find that electricity-generating plants are able to increase electricity output and reduce emissions of SO2 and NOx from 1995 to 2007 due to the introduction of the allowance trading system. However, compared to the approximate 8% per year of exogenous technological progress, the induced effect is relatively small, and the contribution of the induced effect to overall technological progress is about 1-2%.
Resumo:
Radiographs are commonly used to assess articular reduction of the distal tibia (pilon) fractures postoperatively, but may reveal malreductions inaccurately. While Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) are potential 3D alternatives they generate metal-related artifacts. This study aims to quantify the artifact size from orthopaedic screws using CT, 1.5T and 3T MRI data. Three screws were inserted into one intact human cadaver ankle specimen proximal to and along the distal articular surface, then CT, 1.5T and 3T MRI scanned. Four types of screws were investigated: titanium alloy (TA), stainless steel (SS) (Ø = 3.5 mm), cannulated TA (CTA) and cannulated SS (CSS)(Ø = 4.0 mm, Ø empty core = 2.6 mm). 3D artifact models were reconstructed using adaptive thresholding. The artifact size was measured by calculating the perpendicular distance from the central screw axis to the boundary of the artifact in four anatomical directions with respect to the distal tibia. The artifact sizes (in the order of TA, SS, CTA and CSS) from CT were 2.0 mm, 2.6 mm, 1.6 mm and 2.0 mm; from 1.5T MRI they were 3.7 mm, 10.9 mm, 2.9 mm, and 9 mm; and 3T MRI they were 4.4 mm, 15.3 mm, 3.8 mm, and 11.6 mm respectively. Therefore, CT can be used as long as the screws are at a safe distance of about 2 mm from the articular surface. MRI can be used if the screws are at least 3 mm away from the articular surface except SS and CSS. Artifacts from steel screws were too large thus obstructed the pilon from being visualised in MRI. Significant differences (P < 0.05) were found in the size of artifacts between all imaging modalities, screw types and material types, except 1.5T versus 3T MRI for the SS screws (P = 0.063). CTA screws near the joint surface can improve postoperative assessment in CT and MRI. MRI presents a favourable non-ionising alternative when using titanium hardware. Since these factors may influence the quality of postoperative assessment, potential improvements in operative techniques should be considered.
Resumo:
The aim of the paper is to give a feasibility study on the material deposition of Nanoscale textured morphology of titanium and titanium oxide layers on titanium and glass substrates. As a recent development in nanoscale deposition, Physical Vapor Deposition (PVD) based DC magnetron sputtering has been the choice for the deposition process. The nanoscale morphology and surface roughness of the samples have been characterized using Atomic Force Microscope (AFM). The surface roughnesses obtained from AFM have been compared using surface profiler. From the results we can say that the roughness values are dependent on the surface roughness of the substrate. The glass substrate was relatively smoother than the titanium plate and hence lower layer roughness was obtained. From AFM a unique nano-pattern of a boomerang shaped titanium oxide layer on glass substrate have been obtained. The boomerang shaped nano-scale pattern was found to be smaller when the layer was deposited at higher sputtering power. This indicated that the morphology of the deposited titanium oxide layer has been influenced by the sputtering power.
Resumo:
Carbon dioxide (CO2) is considered the most harmful of the greenhouse gases. Despite policy efforts, transport is the only sector experiencing an increase in the level of CO2 emissions and thereby possesses a major threat to sustainable development. In contrast, a reduced level of mobility has been associated with an increasing risk of being socially excluded. However, despite being the two key elements in transport policy, little effort has so far been made to investigate the links between CO2 emissions and social exclusion. This research contributes to this gap by analysing data from 157 weekly activity-travel diaries collected in rural Northern Ireland. CO2 emission levels were calculated using average speed models for different modes of transport. Regression analyses were then conducted to identify the socio-spatial patterns associated with these CO2 emissions, mode choice behaviour, and patterns of participation in activities. This research found that despite emitting a higher level of carbon dioxide, groups in rural areas possess the risk of being socially excluded due to their higher levels of mobility.
Resumo:
The oxidation of aqueous sulfur dioxide in the presence of polymer-supported copper(II) catalyst is also accompanied by homogeneous oxidation of aqueous sulfur dioxide catalyzed by leached copper(II) ions. Aqueous phase oxidation of sulfur dioxide of low concentrations by oxygen in the presence of dissolved copper(II) has therefore been studied. The solubility of SO2 in aqueous solutions is not affected by the concentration of copper(II) in the solution. In the oxidation reaction, only HSO3- is the reactive S(IV) species. Based on this observation a rate model which also incorporates the effect of sulfuric acid on the solubility of SO2 is developed. The rate model includes a power-law type term for the rate of homogeneous phase reaction obtained from a proposed free-radical chain mechanism for the oxidation. Experiments are conducted at various levels of concentrations of SO2 and O-2 in the gas phase and Cu(II) in the liquid phase. The observed orders are one in each of O-2, Cu(II) and HSO3-. This suggests a first-order termination of the free radicals of bisulfite ions.
Resumo:
Orthopyroxene-clinopyroxene-plagioclase needles and symplectite along the cleavage planes and grain boundaries of fluorine-bearing titanian-ferroan pargasite from the Highland Complex, Sri Lanka, are interpreted as evidence for dehydration melting at ultrahigh-temperature conditions. High Ti (up to 0.4 pfu) and F (XF up to 0.56) content in pargasite extends its stability to higher temperatures, and the composition indicates the dehydration melting reaction may take place at ultrahigh-temperatures (~950 °C) at a pressure around 10 kbar, close to peak metamorphic conditions. The increase of Ti content close to the grain boundaries and cleavage planes in pargasite indicates titanium partitioning from the melt during dehydration melting enhanced the stability of the mineral toward ultrahigh-temperature conditions. The REE content in the pargasite shows a similar behavior to that of titanium. The cores with no breakdown assemblage consist of low and flat REE concentrations with respect to the high and Eu-depleted rim. Clinopyroxene in symplectite and needle-shaped lamellae within the pargasite porphyroblasts have similar REE patterns with slightly low-concentrations relative to that of pargasite. In the breakdown assemblage, LREEs are partitioned mainly into plagioclase while the HREEs are partitioned into orthopyroxene. The REE enrichment in the pargasite rims signals their relative partitioning between pargasite rims and melt. Modeling of the partitioning of Ti and REEs associated with pargasite breakdown demonstrates that its stability is greatly enhanced at UHT conditions. This investigation implies that the stability of hydrous minerals such as amphibole can be extended to UHT conditions, and expands our knowledge of metamorphism in the lower crust.
Resumo:
The present work provides an insight into the dry sliding wear behavior of titanium based on synergy between tribo-oxidation and strain rate response. Pin-on-disc tribometer was used to characterize the friction and wear behavior of titanium pin in sliding contact with polycrystalline alumina disk under ambient and vacuum condition. The sliding speed was varied from 0.01 to 1.4 ms(-1), normal load was varied from 15.3 to 76 N and with a sliding distance of 1500 m. It was seen that dry sliding wear behavior of titanium was governed by combination of tribo-oxidation and strain rate response in near surface region of titanium. Strain rate response of titanium was recorded by conducting uni-axial compression tests at constant true strain rate of 100 s(-1) in the temperature range from 298 to 873 K. Coefficient of friction and wear rate were reduced with increased sliding speed from 0.01 to 1.0 ms(-1). This is attributed to the formation of in situ self lubricating oxide film (TiO) and reduction in the intensity of adiabatic shear band cracking in the near surface region. This trend was confirmed by performing series of dry sliding tests under vacuum condition of 2 x 10(-4) Torr. Characterization tools such as optical microscopy, scanning electron microscopy, and X-ray diffractometer provided evidence of such processes. These experimental findings can be applied to enhance the dry sliding wear behavior of titanium with proper choice of operating conditions such as sliding speed, normal load, and environment.
Resumo:
$CO_2^{-}$ ions have been detected in the gas phase and measured by a mass spectrometer with a flight time of 30 µs in the positive column of carbondioxide glow discharge.
Resumo:
The steady-state kinetic constants for the catalysis of CO2 hydration by the sulfonamide-resistant and testosterone-induced carbonic anhydrase from the liver of the male rat has been determined by stopped-flow spectrophotometry. The turnover number was 2.6 ± 0.6 × 103 s− at 25 °C, and was invariant with pH ranging from 6.2 to 8.2 within experimental error. The Km at 25 °C was 5 ± 1 mImage , and was also pH independent. These data are in quantitative agreement with earlier findings of pH-independent CO2 hydration activity for the mammalian skeletal muscle carbonic anhydrase isozyme III. The turnover numbers for higher-activity isozymes I and II are strongly pH dependent in this pH range. Thus, the kinetic status of the male rat liver enzyme is that of carbonic anhydrase III. This finding is consistent with preliminary structural and immunologic data from other laboratories.
Resumo:
Increasing concentrations of atmospheric CO2 decrease stomatal conductance of plants and thus suppress canopy transpiration. The climate response to this CO2-physiological forcing is investigated using the Community Atmosphere Model version 3.1 coupled to Community Land Model version 3.0. In response to the physiological effect of doubling CO2, simulations show a decrease in canopy transpiration of 8%, a mean warming of 0.1K over the land surface, and negligible changes in the hydrological cycle. These climate responses are much smaller than what were found in previous modeling studies. This is largely a result of unrealistic partitioning of evapotranspiration in our model control simulation with a greatly underestimated contribution from canopy transpiration and overestimated contributions from canopy and soil evaporation. This study highlights the importance of a realistic simulation of the hydrological cycle, especially the individual components of evapotranspiration, in reducing the uncertainty in our estimation of climatic response to CO2-physiological forcing. Citation: Cao, L., G. Bala, K. Caldeira, R. Nemani, and G.Ban-Weiss (2009), Climate response to physiological forcing of carbon dioxide simulated by the coupled Community Atmosphere Model (CAM3.1) and Community Land Model (CLM3.0).
Resumo:
Titanium nitride surface layers were prepared by gas-phase thermal nitridation of pure titanium in an ammonia atmosphere at 1373 K for different times. In addition to the surface nitride layer, nitride/hydride formation was observed in the bulk of the specimen. The cross-section of the specimen was characterized by various techniques such as optical microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, secondary ion mass spectrometry and nanomechanical testing, and the mechanism of formation of these phases is discussed.
Resumo:
Rapid solidification of Ti-7.3wt.%Cu (near-eutectoid composition), Ti-36.2wt.%Ni and Ti-34.3wt.% Ni-5.8wt.%Si alloys has been carried out by electron beam melting and splat quenching on a water-cooled rotating copper disc. The product obtained was in the form of thin ribbons 60–100 μm thick. Transmission electron microscopy studies of Ti---Cu alloy splats showed that the microstructure consisted of a mixture of martensite and a lamellar eutectoid product. The formation of the intermetallic compound Ti2Cu involved a diffusionless ω transformation and spinodal clustering. In the case of Ti---Ni alloy the as-quenched microstructure is complex, consisting of α, transformed β and intermetallic phases. This could have arisen possibly as a result of local variation in cooling rates. Rapid solidification of Ti---Ni---Si alloy resulted in partial quenching of an amorphous phase. The amorphous phase was seen to be extremely hard (a Vickers hardness of about 800 HV).