904 resultados para task orientation
Resumo:
Older adults tend to retrieve autobiographical information that is overly general (i.e., not restricted to a single event, termed the overgenerality effect) relative to young adults' specific memories. A vast majority of studies that have reported overgenerality effects explicitly instruct participants to retrieve specific memories, thereby requiring participants to maintain task goals, inhibit inappropriate responses, and control their memory search. Since these processes are impaired in healthy ageing, it is important to determine whether such task instructions influence the magnitude of the overgenerality effect in older adults. In the current study participants retrieved autobiographical memories during presentation of musical clips. Task instructions were manipulated to separate age-related differences in the specificity of underlying memory representations from age-related differences in following task instructions. Whereas young adults modulated memory specificity based on task demands, older adults did not. These findings suggest that reported rates of overgenerality in older adults' memories might include age-related differences in memory representation, as well as differences in task compliance. Such findings provide a better understanding of the underlying cognitive mechanisms involved in age-related changes in autobiographical memory and may also be valuable for future research examining effects of overgeneral memory on general well-being.
Resumo:
Four experiments examined participants' ability to produce surface characteristics of sentences using an on-line story reading task. Participants read a series of stories in which either all, or the majority of sentences were written in the same "style," or surface form. Twice per story, participants were asked to fill in a blank consistent with the story. For sentences that contained three stylistic regularities, participants imitated either all three characteristics (Experiment 2) or two of the three characteristics (Experiment 1), depending on the proportion of in-style sentences. Participants demonstrated a recognition bias for the read style in an unannounced recognition task. When participants read stories in which the two styles were the dative/double object alternation, participants demonstrated a syntactic priming effect in the cloze task, but no consistent recognition bias in a later recognition test (Experiments 3 and 4).
Resumo:
Although it is known that brain regions in one hemisphere may interact very closely with their corresponding contralateral regions (collaboration) or operate relatively independent of them (segregation), the specific brain regions (where) and conditions (how) associated with collaboration or segregation are largely unknown. We investigated these issues using a split field-matching task in which participants matched the meaning of words or the visual features of faces presented to the same (unilateral) or to different (bilateral) visual fields. Matching difficulty was manipulated by varying the semantic similarity of words or the visual similarity of faces. We assessed the white matter using the fractional anisotropy (FA) measure provided by diffusion tensor imaging (DTI) and cross-hemispheric communication in terms of fMRI-based connectivity between homotopic pairs of cortical regions. For both perceptual and semantic matching, bilateral trials became faster than unilateral trials as difficulty increased (bilateral processing advantage, BPA). The study yielded three novel findings. First, whereas FA in anterior corpus callosum (genu) correlated with word-matching BPA, FA in posterior corpus callosum (splenium-occipital) correlated with face-matching BPA. Second, as matching difficulty intensified, cross-hemispheric functional connectivity (CFC) increased in domain-general frontopolar cortex (for both word and face matching) but decreased in domain-specific ventral temporal lobe regions (temporal pole for word matching and fusiform gyrus for face matching). Last, a mediation analysis linking DTI and fMRI data showed that CFC mediated the effect of callosal FA on BPA. These findings clarify the mechanisms by which the hemispheres interact to perform complex cognitive tasks.
Resumo:
This study investigated whether rhesus monkeys show evidence of metacognition in a reduced, visual oculomotor task that is particularly suitable for use in fMRI and electrophysiology. The 2-stage task involved punctate visual stimulation and saccadic eye movement responses. In each trial, monkeys made a decision and then made a bet. To earn maximum reward, they had to monitor their decision and use that information to bet advantageously. Two monkeys learned to base their bets on their decisions within a few weeks. We implemented an operational definition of metacognitive behavior that relied on trial-by-trial analyses and signal detection theory. Both monkeys exhibited metacognition according to these quantitative criteria. Neither external visual cues nor potential reaction time cues explained the betting behavior; the animals seemed to rely exclusively on internal traces of their decisions. We documented the learning process of one monkey. During a 10-session transition phase, betting switched from random to a decision-based strategy. The results reinforce previous findings of metacognitive ability in monkeys and may facilitate the neurophysiological investigation of metacognitive functions.
Resumo:
Inhibitory motor control is a core function of cognitive control. Evidence from diverse experimental approaches has linked this function to a mostly right-lateralized network of cortical and subcortical areas, wherein a signal from the frontal cortex to the basal ganglia is believed to trigger motor-response cancellation. Recently, however, it has been recognized that in the context of typical motor-control paradigms those processes related to actual response inhibition and those related to the attentional processing of the relevant stimuli are highly interrelated and thus difficult to distinguish. Here, we used fMRI and a modified Stop-signal task to specifically examine the role of perceptual and attentional processes triggered by the different stimuli in such tasks, thus seeking to further distinguish other cognitive processes that may precede or otherwise accompany the implementation of response inhibition. In order to establish which brain areas respond to sensory stimulation differences by rare Stop-stimuli, as well as to the associated attentional capture that these may trigger irrespective of their task-relevance, we compared brain activity evoked by Stop-trials to that evoked by Go-trials in task blocks where Stop-stimuli were to be ignored. In addition, region-of-interest analyses comparing the responses to these task-irrelevant Stop-trials, with those to typical relevant Stop-trials, identified separable activity profiles as a function of the task-relevance of the Stop-signal. While occipital areas were mostly blind to the task-relevance of Stop-stimuli, activity in temporo-parietal areas dissociated between task-irrelevant and task-relevant ones. Activity profiles in frontal areas, in turn, were activated mainly by task-relevant Stop-trials, presumably reflecting a combination of triggered top-down attentional influences and inhibitory motor-control processes.
Resumo:
Two-dimensional (2D) hopper flow of disks has been extensively studied. Here, we investigate hopper flow of ellipses with aspect ratio $\alpha = 2$, and we contrast that behavior to the flow of disks. We use a quasi-2D hopper containing photoelastic particles to obtain stress/force information. We simultaneously measure the particle motion and stress. We determine several properties, including discharge rates, jamming probabilities, and the number of particles in clogging arches. For both particle types, the size of the opening, $D$, relative to the size of particles, $\ell$ is an important dimensionless measure. The orientation of the ellipses plays an important role in flow rheology and clogging. The alignment of contacting ellipses enhances the probability of forming stable arches. This study offers insight for applications involving the flow of granular materials consisting of ellipsoidal shapes, and possibly other non-spherical shapes.
Resumo:
Nowadays multi-touch devices (MTD) can be found in all kind of contexts. In the learning context, MTD availability leads many teachers to use them in their class room, to support the use of the devices by students, or to assume that it will enhance the learning processes. Despite the raising interest for MTD, few researches studying the impact in term of performance or the suitability of the technology for the learning context exist. However, even if the use of touch-sensitive screens rather than a mouse and keyboard seems to be the easiest and fastest way to realize common learning tasks (as for instance web surfing behaviour), we notice that the use of MTD may lead to a less favourable outcome. The complexity to generate an accurate fingers gesture and the split attention it requires (multi-tasking effect) make the use of gestures to interact with a touch-sensitive screen more difficult compared to the traditional laptop use. More precisely, it is hypothesized that efficacy and efficiency decreases, as well as the available cognitive resources making the users’ task engagement more difficult. Furthermore, the presented study takes into account the moderator effect of previous experiences with MTD. Two key factors of technology adoption theories were included in the study: familiarity and self-efficacy with the technology.Sixty university students, invited to a usability lab, are asked to perform information search tasks on an online encyclopaedia. The different tasks were created in order to execute the most commonly used mouse actions (e.g. right click, left click, scrolling, zooming, key words encoding…). Two different conditions were created: (1) MTD use and (2) laptop use (with keyboard and mouse). The cognitive load, self-efficacy, familiarity and task engagement scales were adapted to the MTD context. Furthermore, the eye-tracking measurement would offer additional information about user behaviours and their cognitive load.Our study aims to clarify some important aspects towards the usage of MTD and the added value compared to a laptop in a student learning context. More precisely, the outcomes will enhance the suitability of MTD with the processes at stakes, the role of previous knowledge in the adoption process, as well as some interesting insights into the user experience with such devices.
Resumo:
This research validates a computerized dietary selection task (Food-Linked Virtual Response or FLVR) for use in studies of food consumption. In two studies, FLVR task responses were compared with measures of health consciousness, mood, body mass index, personality, cognitive restraint toward food, and actual food selections from a buffet table. The FLVR task was associated with variables which typically predict healthy decision-making and was unrelated to mood or body mass index. Furthermore, the FLVR task predicted participants' unhealthy selections from the buffet, but not overall amount of food. The FLVR task is an inexpensive, valid, and easily administered option for assessing momentary dietary decisions.
Resumo:
Both stimulus and response conflict can disrupt behavior by slowing response times and decreasing accuracy. Although several neural activations have been associated with conflict processing, it is unclear how specific any of these are to the type of stimulus conflict or the amount of response conflict. Here, we recorded electrical brain activity, while manipulating the type of stimulus conflict in the task (spatial [Flanker] versus semantic [Stroop]) and the amount of response conflict (two versus four response choices). Behaviorally, responses were slower to incongruent versus congruent stimuli across all task and response types, along with overall slowing for higher response-mapping complexity. The earliest incongruency-related neural effect was a short-duration frontally-distributed negativity at ~200 ms that was only present in the Flanker spatial-conflict task. At longer latencies, the classic fronto-central incongruency-related negativity 'N(inc)' was observed for all conditions, but was larger and ~100 ms longer in duration with more response options. Further, the onset of the motor-related lateralized readiness potential (LRP) was earlier for the two vs. four response sets, indicating that smaller response sets enabled faster motor-response preparation. The late positive complex (LPC) was present in all conditions except the two-response Stroop task, suggesting this late conflict-related activity is not specifically related to task type or response-mapping complexity. Importantly, across tasks and conditions, the LRP onset at or before the conflict-related N(inc), indicating that motor preparation is a rapid, automatic process that interacts with the conflict-detection processes after it has begun. Together, these data highlight how different conflict-related processes operate in parallel and depend on both the cognitive demands of the task and the number of response options.
Resumo:
Over the last decade, multi-touch devices (MTD) have spread in a range of contexts. In the learning context, MTD accessibility leads more and more teachers to use them in their classroom, assuming that it will improve the learning activities. Despite a growing interest, only few studies have focused on the impacts of MTD use in terms of performance and suitability in a learning context.However, even if the use of touch-sensitive screens rather than a mouse and keyboard seems to be the easiest and fastest way to realize common learning tasks (as for instance web surfing), we notice that the use of MTD may lead to a less favorable outcome. More precisely, tasks that require users to generate complex and/or less common gestures may increase extrinsic cognitive load and impair performance, especially for intrinsically complex tasks. It is hypothesized that task and gesture complexity will affect users’ cognitive resources and decrease task efficacy and efficiency. Because MTD are supposed to be more appealing, it is assumed that it will also impact cognitive absorption. The present study also takes into account user’s prior knowledge concerning MTD use and gestures by using experience with MTD as a moderator. Sixty university students were asked to perform information search tasks on an online encyclopedia. Tasks were set up so that users had to generate the most commonly used mouse actions (e.g. left/right click, scrolling, zooming, text encoding…). Two conditions were created: MTD use and laptop use (with mouse and keyboard) in order to make a comparison between the two devices. An eye tracking device was used to measure user’s attention and cognitive load. Our study sheds light on some important aspects towards the use of MTD and the added value compared to a laptop in a student learning context.
Resumo:
In recent years, neuroscience research spent much effort in revealing brain activity related to metacognition. Despite this endeavor, it remains unclear exactly when metacognitive experiences develop during task performance. To investigate this, the current study used EEG to temporally and spatially dissociate task-related activity from metacognitive activity. In a masked priming paradigm, metacognitive experiences of difficulty were induced by manipulating congruency between prime and target. As expected, participants more frequently rated incongruent trials as difficult and congruent trials as easy, while being completely unable to perceive the masked primes. Results showed that both the N2 and the P3 ERP components were modulated by congruency, but that only the P3 modulation interacted with metacognitive experiences. Single-trial analysis additionally showed that the magnitude of the P3 modulation by congruency accurately predicted the metacognitive response. Source localization indicated that the N2 task-related activity originated in the ACC, whereas the P3-interplay between task-related activation and metacognitive experiences originated from the precuneus. We conclude that task-related activity can be dissociated from later metacognitive processing.
Resumo:
This paper presents work on document retrieval based on first time participation in the CLEF 2001 monolingual retrieval task using French. The experiment findings indicated that Okapi, the text retrieval system in use, can successfully be used for non-English text retrieval. A lot of internal pre-processing is required in the basic search system for conversion into Okapi access formats. Various shell scripts were written to achieve the conversion in a UNIX environment, failure of which would significantly have impeded the overall performance. Based on the experiment findings using Okapi - originally designed for English - it was clear that, although most European languages share conventional word boundaries and variant word morphemes formed by the additon of suffixes, there is significant difference between French and English retrieval depending on the adaptation of indexing and search strategies in use. No sophisticated method for higher recall and precision such as stemming techniques, phrase translation or de-compounding was employed for the experiment and our results were suggestively poor. Future participation would include more refined query translation tools.
Resumo:
An investigation into predicting failure of pneumatic conveyor pipe bends due to hard solid particle impact erosion has been carried out on an industrial scale test rig. The bend puncture point locations may vary with many factors. However, bend orientation was suspected of being a main factor due to the biased particle distribution pattern of a high concentration flow. In this paper, puncture point locations have been studied with different pipe bend orientations and geometry (a solids loading ratio of 10 being used for the high concentration flow). Test results confirmed that the puncture point location is indeed most significantly influenced by the bend orientation (especially for a high concentration flow) due to the biased particle distribution and biased particle flux distribution.
Resumo:
This paper presents an investigation into dynamic self-adjustment of task deployment and other aspects of self-management, through the embedding of multiple policies. Non-dedicated loosely-coupled computing environments, such as clusters and grids are increasingly popular platforms for parallel processing. These abundant systems are highly dynamic environments in which many sources of variability affect the run-time efficiency of tasks. The dynamism is exacerbated by the incorporation of mobile devices and wireless communication. This paper proposes an adaptive strategy for the flexible run-time deployment of tasks; to continuously maintain efficiency despite the environmental variability. The strategy centres on policy-based scheduling which is informed by contextual and environmental inputs such as variance in the round-trip communication time between a client and its workers and the effective processing performance of each worker. A self-management framework has been implemented for evaluation purposes. The framework integrates several policy-controlled, adaptive services with the application code, enabling the run-time behaviour to be adapted to contextual and environmental conditions. Using this framework, an exemplar self-managing parallel application is implemented and used to investigate the extent of the benefits of the strategy