995 resultados para task domains,


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single-phase magnetoelectric multiferroics are ferroelectric materials that display some form of magnetism. In addition, magnetic and ferroelectric order parameters are not independent of one another. Thus, the application of either an electric or magnetic field simultaneously alters both the electrical dipole configuration and the magnetic state of the material. The technological possibilities that could arise from magnetoelectric multiferroics are considerable and a range of functional devices has already been envisioned. Realising these devices, however, requires coupling effects to be significant and to occur at room temperature. Although such characteristics can be created in piezoelectric-magnetostrictive composites, to date they have only been weakly evident in single-phase multiferroics. Here in a newly discovered room temperature multiferroic, we demonstrate significant room temperature coupling by monitoring changes in ferroelectric domain patterns induced by magnetic fields. An order of magnitude estimate of the effective coupling coefficient suggests a value of ~1 × 10-7 sm-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cognitive and neurophysiological correlates of arithmetic calculation, concepts, and applications were examined in 41 adolescents, ages 12-15 years. Psychological and task-related EEG measures which correctly distinguished children who scored low vs. high (using a median split) in each arithmetic subarea were interpreted as indicative of processes involved. Calculation was related to visual-motor sequencing, spatial visualization, theta activity measured during visual-perceptual and verbal tasks at right- and left-hemisphere locations, and right-hemisphere alpha activity measured during a verbal task. Performance on arithmetic word problems was related to spatial visualization and perception, vocabulary, and right-hemisphere alpha activity measured during a verbal task. Results suggest a complex interplay of spatial and sequential operations in arithmetic performance, consistent with processing model concepts of lateralized brain function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Task-based dataflow programming models and runtimes emerge as promising candidates for programming multicore and manycore architectures. These programming models analyze dynamically task dependencies at runtime and schedule independent tasks concurrently to the processing elements. In such models, cache locality, which is critical for performance, becomes more challenging in the presence of fine-grain tasks, and in architectures with many simple cores.

This paper presents a combined hardware-software approach to improve cache locality and offer better performance is terms of execution time and energy in the memory system. We propose the explicit bulk prefetcher (EBP) and epoch-based cache management (ECM) to help runtimes prefetch task data and guide the replacement decisions in caches. The runtimem software can use this hardware support to expose its internal knowledge about the tasks to the architecture and achieve more efficient task-based execution. Our combined scheme outperforms HW-only prefetchers and state-of-the-art replacement policies, improves performance by an average of 17%, generates on average 26% fewer L2 misses, and consumes on average 28% less energy in the components of the memory system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Task dataflow languages simplify the specification of parallel programs by dynamically detecting and enforcing dependencies between tasks. These languages are, however, often restricted to a single level of parallelism. This language design is reflected in the runtime system, where a master thread explicitly generates a task graph and worker threads execute ready tasks and wake-up their dependents. Such an approach is incompatible with state-of-the-art schedulers such as the Cilk scheduler, that minimize the creation of idle tasks (work-first principle) and place all task creation and scheduling off the critical path. This paper proposes an extension to the Cilk scheduler in order to reconcile task dependencies with the work-first principle. We discuss the impact of task dependencies on the properties of the Cilk scheduler. Furthermore, we propose a low-overhead ticket-based technique for dependency tracking and enforcement at the object level. Our scheduler also supports renaming of objects in order to increase task-level parallelism. Renaming is implemented using versioned objects, a new type of hyper object. Experimental evaluation shows that the unified scheduler is as efficient as the Cilk scheduler when tasks have no dependencies. Moreover, the unified scheduler is more efficient than SMPSS, a particular implementation of a task dataflow language.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The inherent difficulty of thread-based shared-memory programming has recently motivated research in high-level, task-parallel programming models. Recent advances of Task-Parallel models add implicit synchronization, where the system automatically detects and satisfies data dependencies among spawned tasks. However, dynamic dependence analysis incurs significant runtime overheads, because the runtime must track task resources and use this information to schedule tasks while avoiding conflicts and races.
We present SCOOP, a compiler that effectively integrates static and dynamic analysis in code generation. SCOOP combines context-sensitive points-to, control-flow, escape, and effect analyses to remove redundant dependence checks at runtime. Our static analysis can work in combination with existing dynamic analyses and task-parallel runtimes that use annotations to specify tasks and their memory footprints. We use our static dependence analysis to detect non-conflicting tasks and an existing dynamic analysis to handle the remaining dependencies. We evaluate the resulting hybrid dependence analysis on a set of task-parallel programs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present BDDT, a task-parallel runtime system that dynamically discovers and resolves dependencies among parallel tasks. BDDT allows the programmer to specify detailed task footprints on any memory address range, multidimensional array tile or dynamic region. BDDT uses a block-based dependence analysis with arbitrary granularity. The analysis is applicable to existing C programs without having to restructure object or array allocation, and provides flexibility in array layouts and tile dimensions.
We evaluate BDDT using a representative set of benchmarks, and we compare it to SMPSs (the equivalent runtime system in StarSs) and OpenMP. BDDT performs comparable to or better than SMPSs and is able to cope with task granularity as much as one order of magnitude finer than SMPSs. Compared to OpenMP, BDDT performs up to 3.9× better for benchmarks that benefit from dynamic dependence analysis. BDDT provides additional data annotations to bypass dependence analysis. Using these annotations, BDDT outperforms OpenMP also in benchmarks where dependence analysis does not discover additional parallelism, thanks to a more efficient implementation of the runtime system.