878 resultados para support vector regression
Resumo:
[EN]We investigate mechanisms which can endow the computer with the ability of describing a human face by means of computer vision techniques. This is a necessary requirement in order to develop HCI approaches which make the user feel himself/herself perceived. This paper describes our experiences considering gender, race and the presence of moustache and glasses. This is accomplished comparing, on a set of 6000 facial images, two di erent face representation approaches: Principal Components Analysis (PCA) and Gabor lters. The results achieved using a Support Vector Machine (SVM) based classi er are promising and particularly better for the second representation approach.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-07
Resumo:
Current Ambient Intelligence and Intelligent Environment research focuses on the interpretation of a subject’s behaviour at the activity level by logging the Activity of Daily Living (ADL) such as eating, cooking, etc. In general, the sensors employed (e.g. PIR sensors, contact sensors) provide low resolution information. Meanwhile, the expansion of ubiquitous computing allows researchers to gather additional information from different types of sensor which is possible to improve activity analysis. Based on the previous research about sitting posture detection, this research attempts to further analyses human sitting activity. The aim of this research is to use non-intrusive low cost pressure sensor embedded chair system to recognize a subject’s activity by using their detected postures. There are three steps for this research, the first step is to find a hardware solution for low cost sitting posture detection, second step is to find a suitable strategy of sitting posture detection and the last step is to correlate the time-ordered sitting posture sequences with sitting activity. The author initiated a prototype type of sensing system called IntelliChair for sitting posture detection. Two experiments are proceeded in order to determine the hardware architecture of IntelliChair system. The prototype looks at the sensor selection and integration of various sensor and indicates the best for a low cost, non-intrusive system. Subsequently, this research implements signal process theory to explore the frequency feature of sitting posture, for the purpose of determining a suitable sampling rate for IntelliChair system. For second and third step, ten subjects are recruited for the sitting posture data and sitting activity data collection. The former dataset is collected byasking subjects to perform certain pre-defined sitting postures on IntelliChair and it is used for posture recognition experiment. The latter dataset is collected by asking the subjects to perform their normal sitting activity routine on IntelliChair for four hours, and the dataset is used for activity modelling and recognition experiment. For the posture recognition experiment, two Support Vector Machine (SVM) based classifiers are trained (one for spine postures and the other one for leg postures), and their performance evaluated. Hidden Markov Model is utilized for sitting activity modelling and recognition in order to establish the selected sitting activities from sitting posture sequences.2. After experimenting with possible sensors, Force Sensing Resistor (FSR) is selected as the pressure sensing unit for IntelliChair. Eight FSRs are mounted on the seat and back of a chair to gather haptic (i.e., touch-based) posture information. Furthermore, the research explores the possibility of using alternative non-intrusive sensing technology (i.e. vision based Kinect Sensor from Microsoft) and find out the Kinect sensor is not reliable for sitting posture detection due to the joint drifting problem. A suitable sampling rate for IntelliChair is determined according to the experiment result which is 6 Hz. The posture classification performance shows that the SVM based classifier is robust to “familiar” subject data (accuracy is 99.8% with spine postures and 99.9% with leg postures). When dealing with “unfamiliar” subject data, the accuracy is 80.7% for spine posture classification and 42.3% for leg posture classification. The result of activity recognition achieves 41.27% accuracy among four selected activities (i.e. relax, play game, working with PC and watching video). The result of this thesis shows that different individual body characteristics and sitting habits influence both sitting posture and sitting activity recognition. In this case, it suggests that IntelliChair is suitable for individual usage but a training stage is required.
Resumo:
The continuous technology evaluation is benefiting our lives to a great extent. The evolution of Internet of things and deployment of wireless sensor networks is making it possible to have more connectivity between people and devices used extensively in our daily lives. Almost every discipline of daily life including health sector, transportation, agriculture etc. is benefiting from these technologies. There is a great potential of research and refinement of health sector as the current system is very often dependent on manual evaluations conducted by the clinicians. There is no automatic system for patient health monitoring and assessment which results to incomplete and less reliable heath information. Internet of things has a great potential to benefit health care applications by automated and remote assessment, monitoring and identification of diseases. Acute pain is the main cause of people visiting to hospitals. An automatic pain detection system based on internet of things with wireless devices can make the assessment and redemption significantly more efficient. The contribution of this research work is proposing pain assessment method based on physiological parameters. The physiological parameters chosen for this study are heart rate, electrocardiography, breathing rate and galvanic skin response. As a first step, the relation between these physiological parameters and acute pain experienced by the test persons is evaluated. The electrocardiography data collected from the test persons is analyzed to extract interbeat intervals. This evaluation clearly demonstrates specific patterns and trends in these parameters as a consequence of pain. This parametric behavior is then used to assess and identify the pain intensity by implementing machine learning algorithms. Support vector machines are used for classifying these parameters influenced by different pain intensities and classification results are achieved. The classification results with good accuracy rates between two and three levels of pain intensities shows clear indication of pain and the feasibility of this pain assessment method. An improved approach on the basis of this research work can be implemented by using both physiological parameters and electromyography data of facial muscles for classification.
Resumo:
Resumo:
Phosphorylation is amongst the most crucial and well-studied post-translational modifications. It is involved in multiple cellular processes which makes phosphorylation prediction vital for understanding protein functions. However, wet-lab techniques are labour and time intensive. Thus, computational tools are required for efficiency. This project aims to provide a novel way to predict phosphorylation sites from protein sequences by adding flexibility and Sezerman Grouping amino acid similarity measure to previous methods, as discovering new protein sequences happens at a greater rate than determining protein structures. The predictor – NOPAY - relies on Support Vector Machines (SVMs) for classification. The features include amino acid encoding, amino acid grouping, predicted secondary structure, predicted protein disorder, predicted protein flexibility, solvent accessibility, hydrophobicity and volume. As a result, we have managed to improve phosphorylation prediction accuracy for Homo sapiens by 3% and 6.1% for Mus musculus. Sensitivity at 99% specificity was also increased by 6% for Homo sapiens and for Mus musculus by 5% on independent test sets. In this study, we have managed to increase phosphorylation prediction accuracy for Homo sapiens and Mus musculus. When there is enough data, future versions of the software may also be able to predict other organisms.
Resumo:
SQL Injection Attack (SQLIA) remains a technique used by a computer network intruder to pilfer an organisation’s confidential data. This is done by an intruder re-crafting web form’s input and query strings used in web requests with malicious intent to compromise the security of an organisation’s confidential data stored at the back-end database. The database is the most valuable data source, and thus, intruders are unrelenting in constantly evolving new techniques to bypass the signature’s solutions currently provided in Web Application Firewalls (WAF) to mitigate SQLIA. There is therefore a need for an automated scalable methodology in the pre-processing of SQLIA features fit for a supervised learning model. However, obtaining a ready-made scalable dataset that is feature engineered with numerical attributes dataset items to train Artificial Neural Network (ANN) and Machine Leaning (ML) models is a known issue in applying artificial intelligence to effectively address ever evolving novel SQLIA signatures. This proposed approach applies numerical attributes encoding ontology to encode features (both legitimate web requests and SQLIA) to numerical data items as to extract scalable dataset for input to a supervised learning model in moving towards a ML SQLIA detection and prevention model. In numerical attributes encoding of features, the proposed model explores a hybrid of static and dynamic pattern matching by implementing a Non-Deterministic Finite Automaton (NFA). This combined with proxy and SQL parser Application Programming Interface (API) to intercept and parse web requests in transition to the back-end database. In developing a solution to address SQLIA, this model allows processed web requests at the proxy deemed to contain injected query string to be excluded from reaching the target back-end database. This paper is intended for evaluating the performance metrics of a dataset obtained by numerical encoding of features ontology in Microsoft Azure Machine Learning (MAML) studio using Two-Class Support Vector Machines (TCSVM) binary classifier. This methodology then forms the subject of the empirical evaluation.
Resumo:
Melanoma is a type of skin cancer and is caused by the uncontrolled growth of atypical melanocytes. In recent decades, computer aided diagnosis is used to support medical professionals; however, there is still no globally accepted tool. In this context, similar to state-of-the-art we propose a system that receives a dermatoscopy image and provides a diagnostic if the lesion is benign or malignant. This tool is composed with next modules: Preprocessing, Segmentation, Feature Extraction, and Classification. Preprocessing involves the removal of hairs. Segmentation is to isolate the lesion. Feature extraction is considering the ABCD dermoscopy rule. The classification is performed by the Support Vector Machine. Experimental evidence indicates that the proposal has 90.63 % accuracy, 95 % sensitivity, and 83.33 % specificity on a data-set of 104 dermatoscopy images. These results are favorable considering the performance of diagnosis by traditional progress in the area of dermatology
Resumo:
Virtual screening (VS) methods can considerably aid clinical research, predicting how ligands interact with drug targets. Most VS methods suppose a unique binding site for the target, but it has been demonstrated that diverse ligands interact with unrelated parts of the target and many VS methods do not take into account this relevant fact. This problem is circumvented by a novel VS methodology named BINDSURF that scans the whole protein surface in order to find new hotspots, where ligands might potentially interact with, and which is implemented in last generation massively parallel GPU hardware, allowing fast processing of large ligand databases. BINDSURF can thus be used in drug discovery, drug design, drug repurposing and therefore helps considerably in clinical research. However, the accuracy of most VS methods and concretely BINDSURF is constrained by limitations in the scoring function that describes biomolecular interactions, and even nowadays these uncertainties are not completely understood. In order to improve accuracy of the scoring functions used in BINDSURF we propose a hybrid novel approach where neural networks (NNET) and support vector machines (SVM) methods are trained with databases of known active (drugs) and inactive compounds, being this information exploited afterwards to improve BINDSURF VS predictions.
Resumo:
Virtual Screening (VS) methods can considerably aid clinical research, predicting how ligands interact with drug targets. However, the accuracy of most VS methods is constrained by limitations in the scoring function that describes biomolecular interactions, and even nowadays these uncertainties are not completely understood. In order to improve accuracy of scoring functions used in most VS methods we propose a hybrid novel approach where neural networks (NNET) and support vector machines (SVM) methods are trained with databases of known active (drugs) and inactive compounds, this information being exploited afterwards to improve VS predictions.
Resumo:
Virtual Screening (VS) methods can considerably aid clinical research, predicting how ligands interact with drug targets. Most VS methods suppose a unique binding site for the target, but it has been demonstrated that diverse ligands interact with unrelated parts of the target and many VS methods do not take into account this relevant fact. This problem is circumvented by a novel VS methodology named BINDSURF that scans the whole protein surface to find new hotspots, where ligands might potentially interact with, and which is implemented in massively parallel Graphics Processing Units, allowing fast processing of large ligand databases. BINDSURF can thus be used in drug discovery, drug design, drug repurposing and therefore helps considerably in clinical research. However, the accuracy of most VS methods is constrained by limitations in the scoring function that describes biomolecular interactions, and even nowadays these uncertainties are not completely understood. In order to solve this problem, we propose a novel approach where neural networks are trained with databases of known active (drugs) and inactive compounds, and later used to improve VS predictions.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Economia, Administração e Contabilidade, Programa de Pós-Graduação em Administração, 2016.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade Gama, Programa de Pós-Graduação em Engenharia Biomédica, 2015.
Resumo:
Abstract: Heavily used and highly valuable, the Florida Reef is one of the world's most threatened ecosystems. Stakeholders from a densely urbanized coastal region in proximity to the reef system recognize its degradation, but their comprehension of climate change and commitment to pay for sustainable management and research funding have been opaque. With an emphasis on recreational anglers, residential stakeholders were surveyed online about their marine activities, perceptions of resources and threats, and willingness to pay (WTP) for dedicated coral reef research funding in Florida. The majority of stakeholders are wealthy, well educated, and politically independent. Supermajorities favored the two scenarios of taxation for a Florida Coral Reef Research Fund, and the scenario with matching federal funds earned higher support. In regression analyses, several factors emerged as significant contributors to stakeholders’ preferences, and the four recurring factors in extended models were prioritizing the environment over the economy, donating to environmental causes, concern about coral reefs, and concern about climate change, with the latter indicating a recent shift of opinion. Status in terms of income and education were found insignificant, and surprisingly income was negatively correlated with WTP. Perceptions through lenses of environmental and emotional attachments appear to overwhelm conventional status-based factors. Applied statewide, the first scenario's extrapolated WTP (based on a sales tax rate of 2.9%) would generate $675 million annually, and the extrapolated WTP under the second scenario, with matching federal funds (based on a sales tax rate of 3.0%) would generate $1.4 billion. Keywords: willingness to pay, coral reef research, taxation, climate change, stakeholder, perceptions, Florida Reef, recreational fishing, anglers