922 resultados para sums of squares
Resumo:
The theory of harmonic force constant refinement calculations is reviewed, and a general-purpose program for force constant and normal coordinate calculations is described. The program, called ASYM20. is available through Quantum Chemistry Program Exchange. It will work on molecules of any symmetry containing up to 20 atoms and will produce results on a series of isotopomers as desired. The vibrational secular equations are solved in either nonredundant valence internal coordinates or symmetry coordinates. As well as calculating the (harmonic) vibrational wavenumbers and normal coordinates, the program will calculate centrifugal distortion constants, Coriolis zeta constants, harmonic contributions to the α′s. root-mean-square amplitudes of vibration, and other quantities related to gas electron-diffraction studies and thermodynamic properties. The program will work in either a predict mode, in which it calculates results from an input force field, or in a refine mode, in which it refines an input force field by least squares to fit observed data on the quantities mentioned above. Predicate values of the force constants may be included in the data set for a least-squares refinement. The program is written in FORTRAN for use on a PC or a mainframe computer. Operation is mainly controlled by steering indices in the input data file, but some interactive control is also implemented.
Resumo:
We report the results of variational calculations of the rovibrational energy levels of HCN for J = 0, 1 and 2, where we reproduce all the ca. 100 observed vibrational states for all observed isotopic species, with energies up to 18000 cm$^{-1}$, to about $\pm $1 cm$^{-1}$, and the corresponding rotational constants to about $\pm $0.001 cm$^{-1}$. We use a hamiltonian expressed in internal coordinates r$_{1}$, r$_{2}$ and $\theta $, using the exact expression for the kinetic energy operator T obtained by direct transformation from the cartesian representation. The potential energy V is expressed as a polynomial expansion in the Morse coordinates y$_{i}$ for the bond stretches and the interbond angle $\theta $. The basis functions are built as products of appropriately scaled Morse functions in the bond-stretches and Legendre or associated Legendre polynomials of cos $\theta $ in the angle bend, and we evaluate matrix elements by Gauss quadrature. The hamiltonian matripx is factorized using the full rovibrational symmetry, and the basis is contracted to an optimized form; the dimensions of the final hamiltonian matrix vary from 240 $\times $ 240 to 1000 $\times $ 1000.We believe that our calculation is converged to better than 1 cm$^{-1}$ at 18 000 cm$^{-1}$. Our potential surface is expressed in terms of 31 parameters, about half of which have been refined by least squares to optimize the fit to the experimental data. The advantages and disadvantages and the future potential of calculations of this type are discussed.
Resumo:
Eight Jersey cows were used in two balanced 4 x 4 Latin Squares to investigate the effects of replacement of dietary starch with non-forage fibre on productivity, diet digestibility and feeding behaviour. Total-mixed rations consisted of maize silage, grass silage and a soyabean meal-based concentrate mixture, each at 250g/kg DM, with the remaining 250g consisting of cracked wheat/soya hulls (SH) in the ratios of 250:0, 167:83; 83:167 and 0:250 g, respectively, for treatments SH0, SH83, SH167 and SH250. Starch concentrations were 302, 248, 193 and 140g/kg DM, and NDF concentrations were 316, 355, 394 and 434g/kg DM, for treatments SHO, SH83, SH167 and SH250, respectively. Total eating time increased (p < 0.05) as SH inclusion increased, but total rumination time was unaffected. Digestibility of DM, organic matter and starch declined (p < 0.01) as SH inclusion increased, whilst digestibility of NDF and ADF increased (p < 0.01). Dry-matter intake tended to decline with increasing SH, whilst bodyweight, milk yield and fat and lactose concentrations were unaffected by treatment. Milk protein concentration decreased (p < 0.01) as SH level increased. Feed conversion efficiency improved (p < 0.05) as SH inclusion rose, but it was not possible to determine whether this was due to the increased fibre levels alone, or the favourable effect on rumen fermentation of decreasing starch levels. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The influence matrix is used in ordinary least-squares applications for monitoring statistical multiple-regression analyses. Concepts related to the influence matrix provide diagnostics on the influence of individual data on the analysis - the analysis change that would occur by leaving one observation out, and the effective information content (degrees of freedom for signal) in any sub-set of the analysed data. In this paper, the corresponding concepts have been derived in the context of linear statistical data assimilation in numerical weather prediction. An approximate method to compute the diagonal elements of the influence matrix (the self-sensitivities) has been developed for a large-dimension variational data assimilation system (the four-dimensional variational system of the European Centre for Medium-Range Weather Forecasts). Results show that, in the boreal spring 2003 operational system, 15% of the global influence is due to the assimilated observations in any one analysis, and the complementary 85% is the influence of the prior (background) information, a short-range forecast containing information from earlier assimilated observations. About 25% of the observational information is currently provided by surface-based observing systems, and 75% by satellite systems. Low-influence data points usually occur in data-rich areas, while high-influence data points are in data-sparse areas or in dynamically active regions. Background-error correlations also play an important role: high correlation diminishes the observation influence and amplifies the importance of the surrounding real and pseudo observations (prior information in observation space). Incorrect specifications of background and observation-error covariance matrices can be identified, interpreted and better understood by the use of influence-matrix diagnostics for the variety of observation types and observed variables used in the data assimilation system. Copyright © 2004 Royal Meteorological Society
Resumo:
Background: Pseudomonas fluorescens are common soil bacteria that can improve plant health through nutrient cycling, pathogen antagonism and induction of plant defenses. The genome sequences of strains SBW25 and Pf0-1 were determined and compared to each other and with P. fluorescens Pf-5. A functional genomic in vivo expression technology (IVET) screen provided insight into genes used by P. fluorescens in its natural environment and an improved understanding of the ecological significance of diversity within this species. Results: Comparisons of three P. fluorescens genomes (SBW25, Pf0-1, Pf-5) revealed considerable divergence: 61% of genes are shared, the majority located near the replication origin. Phylogenetic and average amino acid identity analyses showed a low overall relationship. A functional screen of SBW25 defined 125 plant-induced genes including a range of functions specific to the plant environment. Orthologues of 83 of these exist in Pf0-1 and Pf-5, with 73 shared by both strains. The P. fluorescens genomes carry numerous complex repetitive DNA sequences, some resembling Miniature Inverted-repeat Transposable Elements (MITEs). In SBW25, repeat density and distribution revealed 'repeat deserts' lacking repeats, covering approximately 40% of the genome. Conclusions: P. fluorescens genomes are highly diverse. Strain-specific regions around the replication terminus suggest genome compartmentalization. The genomic heterogeneity among the three strains is reminiscent of a species complex rather than a single species. That 42% of plant-inducible genes were not shared by all strains reinforces this conclusion and shows that ecological success requires specialized and core functions. The diversity also indicates the significant size of genetic information within the Pseudomonas pan genome.
Resumo:
From a statistician's standpoint, the interesting kind of isomorphism for fractional factorial designs depends on the statistical application. Combinatorially isomorphic fractional factorial designs may have different statistical properties when factors are quantitative. This idea is illustrated by using Latin squares of order 3 to obtain fractions of the 3(3) factorial. design in 18 runs.
Resumo:
Background: MHC Class I molecules present antigenic peptides to cytotoxic T cells, which forms an integral part of the adaptive immune response. Peptides are bound within a groove formed by the MHC heavy chain. Previous approaches to MHC Class I-peptide binding prediction have largely concentrated on the peptide anchor residues located at the P2 and C-terminus positions. Results: A large dataset comprising MHC-peptide structural complexes was created by remodelling pre-determined x-ray crystallographic structures. Static energetic analysis, following energy minimisation, was performed on the dataset in order to characterise interactions between bound peptides and the MHC Class I molecule, partitioning the interactions within the groove into van der Waals, electrostatic and total non-bonded energy contributions. Conclusion: The QSAR techniques of Genetic Function Approximation (GFA) and Genetic Partial Least Squares (G/PLS) algorithms were used to identify key interactions between the two molecules by comparing the calculated energy values with experimentally-determined BL50 data. Although the peptide termini binding interactions help ensure the stability of the MHC Class I-peptide complex, the central region of the peptide is also important in defining the specificity of the interaction. As thermodynamic studies indicate that peptide association and dissociation may be driven entropically, it may be necessary to incorporate entropic contributions into future calculations.
Resumo:
Structure activity relationships (SARs) are presented for the gas-phase reactions of RO2 with HO2, and the self- and cross-reactions of RO2. For RO2+HO2 the SAR is based upon a correlation between the logarithm of the measured rate coefficient and a calculated ionisation potential for the molecule R-CH=CH2, R being the same group in both the radical and molecular analogue. The correlation observed is strong and only for one RO2 species does the measured rate coefficient deviate by more than a factor of two from the linear least-squares regression line. For the self- and cross-reactions of RO2 radicals, the SAR is based upon a correlation between the logarithm of the measured rate coefficient and the calculated electrostatic potential (ESP) at the equivalent carbon atom in the RH molecule to which oxygen is attached in RO2, again R being the same group in the molecule and the radical. For cases where R is a simple alkyl-group, a strong linear correlation observed. For RO2 radicals which contain lone pair-bearing substituents and for which the calculated ESP<-0.05 self-reaction rate coefficients appear to be insensitive to the value of the ESP. For RO2 of this type with ESP>-0.05 a linear relationship between log k and the ESP is again observed. Using the relationships, 84 out of the 85 rate coefficients used to develop the SARs are predicted to within a factor of three of their measured values. A relationship is also presented that allows the prediction of the Arrhenius parameters for the self-reactions of simple alkyl RO2 radicals. On the basis of the correlations, predictions of room-temperature rate coefficients are made for a number of atmospherically important peroxyl-peroxyl radical reactions. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we present an on-line estimation algorithm for an uncertain time delay in a continuous system based on the observational input-output data, subject to observational noise. The first order Pade approximation is used to approximate the time delay. At each time step, the algorithm combines the well known Kalman filter algorithm and the recursive instrumental variable least squares (RIVLS) algorithm in cascade form. The instrumental variable least squares algorithm is used in order to achieve the consistency of the delay parameter estimate, since an error-in-the-variable model is involved. An illustrative example is utilized to demonstrate the efficacy of the proposed approach.
Resumo:
We consider a fully complex-valued radial basis function (RBF) network for regression application. The locally regularised orthogonal least squares (LROLS) algorithm with the D-optimality experimental design, originally derived for constructing parsimonious real-valued RBF network models, is extended to the fully complex-valued RBF network. Like its real-valued counterpart, the proposed algorithm aims to achieve maximised model robustness and sparsity by combining two effective and complementary approaches. The LROLS algorithm alone is capable of producing a very parsimonious model with excellent generalisation performance while the D-optimality design criterion further enhances the model efficiency and robustness. By specifying an appropriate weighting for the D-optimality cost in the combined model selecting criterion, the entire model construction procedure becomes automatic. An example of identifying a complex-valued nonlinear channel is used to illustrate the regression application of the proposed fully complex-valued RBF network.
Resumo:
A basic principle in data modelling is to incorporate available a priori information regarding the underlying data generating mechanism into the modelling process. We adopt this principle and consider grey-box radial basis function (RBF) modelling capable of incorporating prior knowledge. Specifically, we show how to explicitly incorporate the two types of prior knowledge: the underlying data generating mechanism exhibits known symmetric property and the underlying process obeys a set of given boundary value constraints. The class of orthogonal least squares regression algorithms can readily be applied to construct parsimonious grey-box RBF models with enhanced generalisation capability.
Resumo:
The note proposes an efficient nonlinear identification algorithm by combining a locally regularized orthogonal least squares (LROLS) model selection with a D-optimality experimental design. The proposed algorithm aims to achieve maximized model robustness and sparsity via two effective and complementary approaches. The LROLS method alone is capable of producing a very parsimonious model with excellent generalization performance. The D-optimality design criterion further enhances the model efficiency and robustness. An added advantage is that the user only needs to specify a weighting for the D-optimality cost in the combined model selecting criterion and the entire model construction procedure becomes automatic. The value of this weighting does not influence the model selection procedure critically and it can be chosen with ease from a wide range of values.
Resumo:
We consider a fully complex-valued radial basis function (RBF) network for regression and classification applications. For regression problems, the locally regularised orthogonal least squares (LROLS) algorithm aided with the D-optimality experimental design, originally derived for constructing parsimonious real-valued RBF models, is extended to the fully complex-valued RBF (CVRBF) network. Like its real-valued counterpart, the proposed algorithm aims to achieve maximised model robustness and sparsity by combining two effective and complementary approaches. The LROLS algorithm alone is capable of producing a very parsimonious model with excellent generalisation performance while the D-optimality design criterion further enhances the model efficiency and robustness. By specifying an appropriate weighting for the D-optimality cost in the combined model selecting criterion, the entire model construction procedure becomes automatic. An example of identifying a complex-valued nonlinear channel is used to illustrate the regression application of the proposed fully CVRBF network. The proposed fully CVRBF network is also applied to four-class classification problems that are typically encountered in communication systems. A complex-valued orthogonal forward selection algorithm based on the multi-class Fisher ratio of class separability measure is derived for constructing sparse CVRBF classifiers that generalise well. The effectiveness of the proposed algorithm is demonstrated using the example of nonlinear beamforming for multiple-antenna aided communication systems that employ complex-valued quadrature phase shift keying modulation scheme. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
A unified approach is proposed for data modelling that includes supervised regression and classification applications as well as unsupervised probability density function estimation. The orthogonal-least-squares regression based on the leave-one-out test criteria is formulated within this unified data-modelling framework to construct sparse kernel models that generalise well. Examples from regression, classification and density estimation applications are used to illustrate the effectiveness of this generic data-modelling approach for constructing parsimonious kernel models with excellent generalisation capability. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We provide a system identification framework for the analysis of THz-transient data. The subspace identification algorithm for both deterministic and stochastic systems is used to model the time-domain responses of structures under broadband excitation. Structures with additional time delays can be modelled within the state-space framework using additional state variables. We compare the numerical stability of the commonly used least-squares ARX models to that of the subspace N4SID algorithm by using examples of fourth-order and eighth-order systems under pulse and chirp excitation conditions. These models correspond to structures having two and four modes simultaneously propagating respectively. We show that chirp excitation combined with the subspace identification algorithm can provide a better identification of the underlying mode dynamics than the ARX model does as the complexity of the system increases. The use of an identified state-space model for mode demixing, upon transformation to a decoupled realization form is illustrated. Applications of state-space models and the N4SID algorithm to THz transient spectroscopy as well as to optical systems are highlighted.