899 resultados para subcellular targeting


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Myc family genes are often deregulated in embryonal tumors of childhood including medulloblastoma and neuroblastoma and are frequently associated with aggressive, poorly differentiated tumors. The Myc protein is a transcription factor that regulates a variety of cellular processes including cell growth and proliferation, cell cycle progression, differentiation, apoptosis, and cell motility. Potential strategies that either inhibit the proliferation-promoting effect of Myc and/or activate its pro-apoptotic function are presently being explored. In this review, we will give an overview of Myc activation in embryonal tumors and discuss current strategies aimed at targeting Myc for cancer treatment.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND & AIMS: Congenital sucrase-isomaltase (SI) deficiency is an autosomal-recessive intestinal disorder characterized by a drastic reduction or absence of sucrase and isomaltase activities. Previous studies have indicated that single mutations underlie individual phenotypes of the disease. We investigated whether compound heterozygous mutations, observed in some patients, have a role in disease pathogenesis. METHODS: We introduced mutations into the SI complementary DNA that resulted in the amino acid substitutions V577G and G1073D (heterozygous mutations found in one group of patients) or C1229Y and F1745C (heterozygous mutations found in another group). The mutant genes were expressed transiently, alone or in combination, in COS cells and the effects were assessed at the protein, structural, and subcellular levels. RESULTS: The mutants SI-V577G, SI-G1073D, and SI-F1745C were misfolded and could not exit the endoplasmic reticulum, whereas SI-C1229Y was transported only to the Golgi apparatus. Co-expression of mutants found on each SI allele in patients did not alter the protein's biosynthetic features or improve its enzymatic activity. Importantly, the mutations C1229Y and F1745C, which lie in the sucrase domains of SI, prevented its targeting to the cell's apical membrane but did not affect protein folding or isomaltase activity. CONCLUSIONS: Compound heterozygosity is a novel pathogenic mechanism of congenital SI deficiency. The effects of mutations in the sucrase domain of SIC1229Y and SIF1745C indicate the importance of a direct interaction between isomaltase and sucrose and the role of sucrose as an intermolecular chaperone in the intracellular transport of SI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Melanoma, occurring as a rapidly progressive skin cancer, is resistant to current chemo- and radiotherapy, especially after metastases to distant organs has taken place. Most chemotherapeutic drugs exert their cytotoxic effect by inducing apoptosis, which, however, is often deficient in cancer cells. Thus, it is appropriate to attempt the targeting of alternative pathways, which regulate cellular viability. Recent studies of autophagy, a well-conserved cellular catabolic process, promise to improve the therapeutic outcome in melanoma patients. Although a dual role for autophagy in cancer therapy has been reported, both protecting against and promoting cell death, the potential for using autophagy in cancer therapy seems to be promising. Here, we review the recent literature on the role of autophagy in melanoma with respect to the expression of autophagic markers, the involvement of autophagy in chemo- and immunotherapy, as well as the role of autophagy in hypoxia and altered metabolic pathways employed for melanoma therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fusion toxins used for cancer-related therapy have demonstrated short circulation half-lives, which impairs tumor localization and, hence, efficacy. Here, we demonstrate that the pharmacokinetics of a fusion toxin composed of a designed ankyrin repeat protein (DARPin) and domain I–truncated Pseudomonas Exotoxin A (PE40/ETA″) can be significantly improved by facile bioorthogonal conjugation with a polyethylene glycol (PEG) polymer at a unique position. Fusion of the anti-EpCAM DARPin Ec1 to ETA″ and expression in methionine-auxotrophic E. coli enabled introduction of the nonnatural amino acid azidohomoalanine (Aha) at position 1 for strain-promoted click PEGylation. PEGylated Ec1-ETA″ was characterized by detailed biochemical analysis, and its potential for tumor targeting was assessed using carcinoma cell lines of various histotypes in vitro, and subcutaneous and orthotopic tumor xenografts in vivo. The mild click reaction resulted in a well-defined mono-PEGylated product, which could be readily purified to homogeneity. Despite an increased hydrodynamic radius resulting from the polymer, the fusion toxin demonstrated high EpCAM-binding activity and retained cytotoxicity in the femtomolar range. Pharmacologic analysis in mice unveiled an almost 6-fold increase in the elimination half-life (14 vs. 82 minutes) and a more than 7-fold increase in the area under the curve (AUC) compared with non-PEGylated Ec1-ETA″, which directly translated in increased and longer-lasting effects on established tumor xenografts. Our data underline the great potential of combining the inherent advantages of the DARPin format with bioorthogonal click chemistry to overcome the limitations of engineering fusion toxins with enhanced efficacy for cancer-related therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic kidney diseases including glomerulonephritis are often accompanied by acute or chronic inflammation that leads to an increase in extracellular matrix (ECM) production and subsequent glomerulosclerosis. Glomerulonephritis is one of the leading causes for end-stage renal failure with high morbidity and mortality, and there are still only a limited number of drugs for treatment available. In this MiniReview, we discuss the possibility of targeting sphingolipids, specifically the sphingosine kinase 1 (SphK1) and sphingosine 1-phosphate (S1P) pathway, as new therapeutic strategy for the treatment of glomerulonephritis, as this pathway was demonstrated to be dysregulated under disease conditions. Sphingosine 1-phosphate is a multifunctional signalling molecule, which was shown to influence several hallmarks of glomerulonephritis including mesangial cell proliferation, renal inflammation and fibrosis. Most importantly, the site of action of S1P determines the final effect on disease progression. Concerning renal fibrosis, extracellular S1P acts pro-fibrotic via activation of cell surface S1P receptors, whereas intracellular S1P was shown to attenuate the fibrotic response. Interference with S1P signalling by treatment with FTY720, an S1P receptor modulator, resulted in beneficial effects in various animal models of chronic kidney diseases. Also, sonepcizumab, a monoclonal anti-S1P antibody that neutralizes extracellular S1P, and a S1P-degrading recombinant S1P lyase are promising new strategies for the treatment of glomerulonephritis. In summary, especially due to the bifunctionality of S1P, the SphK1/S1P pathway provides multiple target sites for the treatment of chronic kidney diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitogen-activated protein kinases (MAPKs) regulate key signaling events in eukaryotic cells. In the genomes of protozoan Plasmodium parasites, the causative agents of malaria, two genes encoding kinases with significant homology to other eukaryotic MAPKs have been identified (mapk1, mapk2). In this work, we show that both genes are transcribed during Plasmodium berghei liver stage development, and analyze expression and subcellular localization of the PbMAPK1 protein in liver stage parasites. Live cell imaging of transgenic parasites expressing GFP-tagged PbMAPK1 revealed a nuclear localization of PbMAPK1 in the early schizont stage mediated by nuclear localization signals in the C-terminal domain. In contrast, a distinct localization of PbMAPK1 in comma/ring-shaped structures in proximity to the parasite's nuclei and the invaginating parasite membrane was observed during the cytomere stage of parasite development as well as in immature blood stage schizonts. The PbMAPK1 localization was found to be independent of integrity of a motif putatively involved in ATP binding, integrity of the putative activation motif and the presence of a predicted coiled-coil domain in the C-terminal domain. Although PbMAPK1 knock out parasites showed normal liver stage development, the kinase may still fulfill a dual function in both schizogony and merogony of liver stage parasites regulated by its dynamic and stage-dependent subcellular localization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: Identification of the ventrointermediate thalamic nucleus (Vim) in modern 3T high-field MRI for image-based targeting in deep brain stimulation (DBS) is still challenging. To evaluate the usefulness and reliability of analyzing the connectivity with the cerebellum using Q-ball-calculation we performed a retrospective analysis. Method: 5 patients who underwent bilateral implantation of electrodes in the Vim for treatment of Essential Tremor between 2011 and 2012 received additional preoperative Q-ball imaging. Targeting was performed according to atlas coordinates and standard MRI. Additionally we performed a retrospective identification of the Vim by analyzing the connectivity of the thalamus with the dentate nucleus. The exact position of the active stimulation contact in the postoperative CT was correlated with the Vim as it was identified by Q-ball calculation. Results: Localization of the Vim by analysis of the connectivity between thalamus and cerebellum was successful in all 5 patients on both sides. The average position of the active contacts was 14.6 mm (SD 1.24) lateral, 5.37 mm (SD 0.094 posterior and 2.21 mm (SD 0.69) cranial of MC. The cranial portion of the dentato-rubro-thalamic tract was localized an average of 3.38 mm (SD 1.57) lateral and 1.5 mm (SD 1.22) posterior of the active contact. Conclusions: Connectivity analysis by Q-ball calculation provided direct visualization of the Vim in all cases. Our preliminary results suggest, that the target determined by connectivity analysis is valid and could possibly be used in addition to or even instead of atlas based targeting. Larger prospective calculations are needed to determine the robustness of this method in providing refined information useful for neurosurgical treatment of tremor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background & Aims: HLA-B⁄27 is associated with spontaneous HCV genotype 1 clearance. HLA-B⁄27-restricted CD8+ T cells target three NS5B epitopes. Two of these epitopes are dominantly targeted in the majority of HLA-B⁄27+ patients. In chronic infection, viral escape occurs consistently in these two epitopes. The third epitope (NS5B2820) was dominantly targeted in an acutely infected patient. This was in contrast, however, to the lack of recognition and viral escape in the large majority of HLA-B⁄27+ patients. Here, we set out to determine the host factors contributing to selective targeting of this epitope. Methods: Four-digit HLA class I typing and viral sequence analyses were performed in 78 HLA-B⁄27+ patients with chronic HCV genotype 1 infection. CD8+ T cell analyses were performed in a subset of patients. In addition, HLA/peptide affinity was compared for HLA-B⁄27:02 and 05. Results: The NS5B2820 epitope is only restricted by the HLA-B⁄27 subtype HLA-B⁄27:02 (that is frequent in Mediterranean populations), but not by the prototype HLA-B⁄27 subtype B⁄27:05. Indeed, the epitope is very dominant in HLA-B⁄27:02+ patients and is associated with viral escape mutations at the anchor position for HLA-binding in 12 out of 13 HLA-B⁄27:02+ chronically infected patients. Conclusions: The NS5B2820 epitope is immunodominant in the context of HLA-B⁄27:02, but is not restricted by other HLA-B⁄27 subtypes. This finding suggests an important role of HLA subtypes in the restriction of HCV-specific CD8+ responses. With minor HLA subtypes covering up to 39% of specific populations, these findings may have important implications for the selection of epitopes for global vaccines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT Aims: ID1 is an important component of the MET-SRC signaling pathway, which is a regulator of cell migration and invasion. We hypothesized that the ALK/MET inhibitor crizotinib inhibits migration via MET-SRC-ID1, rather than ALK. Materials & methods: We used ALK fusion-positive and -negative lung cancer cell lines; crizotinib, PHA-665752, and saracatinib, and stable transfection with shMET. We performed western blotting for p-ALK, ALK, p-MET, MET, p-SRC, SRC and ID1, and quantitative real-time PCR for ID1. Results: Crizotinib decreased p-MET, p-SRC and ID1 levels in ALK- and or MET-positive cell lines and inhibited cell migration. Knockdown of MET was comparable with the effect of crizotinib. Conclusion: The effects of crizotinib on ID1 expression and cancer cell migration were associated with the presence of activated MET, rather than ALK fusion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gastrin releasing peptide (GRP) is a regulatory peptide that acts through its receptor (GRPR) to regulate physiological functions in various organs. GRPR is overexpressed in neoplastic cells of most prostate cancers and some renal cell cancers and in the tumoral vessels of urinary tract cancers. Thus, targeting these tumours with specifically designed GRP analogues has potential clinical application. Potent and specific radioactive, cytotoxic or nonradioactive GRP analogues have been designed and tested in various animal tumour models with the aim of receptor targeting for tumour diagnosis or therapy. All three categories of compound were found suitable for tumour targeting in animal models. The cytotoxic and nonradioactive GRP analogues have not yet shown convincing tumour-reducing effects in human trials; however, the first clinical studies of radioactive GRP analogues--both agonists and antagonists--suggest promising opportunities for both diagnostic tumour imaging and radiotherapy of prostate and other GRPR-expressing cancers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Accurate needle placement is crucial for the success of percutaneous radiological needle interventions. We compared three guiding methods using an optical-based navigation system: freehand, using a stereotactic aiming device and active depth control, and using a stereotactic aiming device and passive depth control. METHODS For each method, 25 punctures were performed on a non-rigid phantom. Five 1 mm metal screws were used as targets. Time requirements were recorded, and target positioning errors (TPE) were measured on control scans as the distance between needle tip and target. RESULTS Time requirements were reduced using the aiming device and passive depth control. The Euclidian TPE was similar for each method (4.6 ± 1.2-4.9 ± 1.7 mm). However, the lateral component was significantly lower when an aiming device was used (2.3 ± 1.3-2.8 ± 1.6 mm with an aiming device vs 4.2 ± 2.0 mm without). DISCUSSION Using an aiming device may increase the lateral accuracy of navigated needle insertion.