980 resultados para stochastic approximation algorithm
Resumo:
Less is known about social welfare objectives when it is costly to change prices, as in Rotemberg (1982), compared with Calvo-type models. We derive a quadratic approximate welfare function around a distorted steady state for the costly price adjustment model. We highlight the similarities and differences to the Calvo setup. Both models imply inflation and output stabilization goals. It is explained why the degree of distortion in the economy influences inflation aversion in the Rotemberg framework in a way that differs from the Calvo setup.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
This paper introduces a new model of trend (or underlying) inflation. In contrast to many earlier approaches, which allow for trend inflation to evolve according to a random walk, ours is a bounded model which ensures that trend inflation is constrained to lie in an interval. The bounds of this interval can either be fixed or estimated from the data. Our model also allows for a time-varying degree of persistence in the transitory component of inflation. The bounds placed on trend inflation mean that standard econometric methods for estimating linear Gaussian state space models cannot be used and we develop a posterior simulation algorithm for estimating the bounded trend inflation model. In an empirical exercise with CPI inflation we find the model to work well, yielding more sensible measures of trend inflation and forecasting better than popular alternatives such as the unobserved components stochastic volatility model.
Resumo:
Functional RNA structures play an important role both in the context of noncoding RNA transcripts as well as regulatory elements in mRNAs. Here we present a computational study to detect functional RNA structures within the ENCODE regions of the human genome. Since structural RNAs in general lack characteristic signals in primary sequence, comparative approaches evaluating evolutionary conservation of structures are most promising. We have used three recently introduced programs based on either phylogenetic-stochastic context-free grammar (EvoFold) or energy directed folding (RNAz and AlifoldZ), yielding several thousand candidate structures (corresponding to approximately 2.7% of the ENCODE regions). EvoFold has its highest sensitivity in highly conserved and relatively AU-rich regions, while RNAz favors slightly GC-rich regions, resulting in a relatively small overlap between methods. Comparison with the GENCODE annotation points to functional RNAs in all genomic contexts, with a slightly increased density in 3'-UTRs. While we estimate a significant false discovery rate of approximately 50%-70% many of the predictions can be further substantiated by additional criteria: 248 loci are predicted by both RNAz and EvoFold, and an additional 239 RNAz or EvoFold predictions are supported by the (more stringent) AlifoldZ algorithm. Five hundred seventy RNAz structure predictions fall into regions that show signs of selection pressure also on the sequence level (i.e., conserved elements). More than 700 predictions overlap with noncoding transcripts detected by oligonucleotide tiling arrays. One hundred seventy-five selected candidates were tested by RT-PCR in six tissues, and expression could be verified in 43 cases (24.6%).
Resumo:
We model a boundedly rational agent who suffers from limited attention. The agent considers each feasible alternative with a given (unobservable) probability, the attention parameter, and then chooses the alternative that maximises a preference relation within the set of considered alternatives. We show that this random choice rule is the only one for which the impact of removing an alternative on the choice probability of any other alternative is asymmetric and menu independent. Both the preference relation and the attention parameters are identi fied uniquely by stochastic choice data.
Resumo:
Vector Autoregressive Moving Average (VARMA) models have many theoretical properties which should make them popular among empirical macroeconomists. However, they are rarely used in practice due to over-parameterization concerns, difficulties in ensuring identification and computational challenges. With the growing interest in multivariate time series models of high dimension, these problems with VARMAs become even more acute, accounting for the dominance of VARs in this field. In this paper, we develop a Bayesian approach for inference in VARMAs which surmounts these problems. It jointly ensures identification and parsimony in the context of an efficient Markov chain Monte Carlo (MCMC) algorithm. We use this approach in a macroeconomic application involving up to twelve dependent variables. We find our algorithm to work successfully and provide insights beyond those provided by VARs.
Resumo:
Classical definitions of complementarity are based on cross price elasticities, and so they do not apply, for example, when goods are free. This context includes many relevant cases such as online newspapers and public attractions. We look for a complementarity notion that does not rely on price variation and that is: behavioural (based only on observable choice data); and model-free (valid whether the agent is rational or not). We uncover a conflict between properties that complementarity should intuitively possess. We discuss three ways out of the impossibility.
Resumo:
The implicit projection algorithm of isotropic plasticity is extended to an objective anisotropic elastic perfectly plastic model. The recursion formula developed to project the trial stress on the yield surface, is applicable to any non linear elastic law and any plastic yield function.A curvilinear transverse isotropic model based on a quadratic elastic potential and on Hill's quadratic yield criterion is then developed and implemented in a computer program for bone mechanics perspectives. The paper concludes with a numerical study of a schematic bone-prosthesis system to illustrate the potential of the model.
Resumo:
The neutral rate of allelic substitution is analyzed for a class-structured population subject to a stationary stochastic demographic process. The substitution rate is shown to be generally equal to the effective mutation rate, and under overlapping generations it can be expressed as the effective mutation rate in newborns when measured in units of average generation time. With uniform mutation rate across classes the substitution rate reduces to the mutation rate.
Resumo:
A family of nonempty closed convex sets is built by using the data of the Generalized Nash equilibrium problem (GNEP). The sets are selected iteratively such that the intersection of the selected sets contains solutions of the GNEP. The algorithm introduced by Iusem-Sosa (2003) is adapted to obtain solutions of the GNEP. Finally some numerical experiments are given to illustrate the numerical behavior of the algorithm.
Resumo:
Metropolitan areas concentrate the main share of population, production and consumption in OECD countries. They are likely to be the most important units for economic, social and environmental analysis as well as for the development of policy strategies. However, one of the main problems that occur when adopting metropolitan areas as units of analysis and policy in European countries is the absence of widely accepted standards for identifying them. This severe problem appeared when we tried to perform comparative research between Spain and Italy using metropolitan areas as units of analysis. The aim of this paper is to identify metropolitan areas in Spain and Italy using similar methodologies. The results allow comparing the metropolitan realities of both countries as well as providing the metropolitan units that can be used in subsequent comparative researches. Two methodologies are proposed: the Cheshire-GEMACA methodology (FUR) and an iterative version of the USA-MSA algorithm, particularly adapted to deal with polycentric metropolitan areas (DMA). Both methods show a good approximation to the metropolitan reality and produce very similar results: 75 FUR and 67 DMA in Spain (75% of total population and employment), and 81 FUR and 86 DMA in Italy (70% of total population and employment).
Resumo:
En aquest treball realitzem un estudi sobre la detecció y la descripció de punts característics, una tecnologia que permet extreure informació continguda en les imatges. Primerament presentem l'estat de l'art juntament amb una avaluació dels mètodes més rellevants. A continuació proposem els nous mètodes que hem creat de detecció i descripció, juntament amb l'algorisme òptim anomenat DART, el qual supera l'estat de l'art. Finalment mostrem algunes aplicacions on s'utilitzen els punts DART. Basant-se en l'aproximació de l'espai d'escales Gaussià, el detector proposat pot extreure punts de distint tamany invariants davant canvis en el punt de vista, la rotació i la iluminació. La reutilització de l'espai d'escales durant el procés de descripció, així com l'ús d'estructures simplificades i optimitzades, permeten realitzar tot el procediment en un temps computacional menor a l'obtingut fins al moment. Així s'aconsegueixen punts invariants i distingibles de forma ràpida, el qual permet la seva utilització en aplicacions com el seguiment d'objectes, la reconstrucció d'escenaris 3D i en motors de cerca visual.
Gaussian estimates for the density of the non-linear stochastic heat equation in any space dimension
Resumo:
In this paper, we establish lower and upper Gaussian bounds for the probability density of the mild solution to the stochastic heat equation with multiplicative noise and in any space dimension. The driving perturbation is a Gaussian noise which is white in time with some spatially homogeneous covariance. These estimates are obtained using tools of the Malliavin calculus. The most challenging part is the lower bound, which is obtained by adapting a general method developed by Kohatsu-Higa to the underlying spatially homogeneous Gaussian setting. Both lower and upper estimates have the same form: a Gaussian density with a variance which is equal to that of the mild solution of the corresponding linear equation with additive noise.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
In this paper the scales of classes of stochastic processes are introduced. New interpolation theorems and boundedness of some transforms of stochastic processes are proved. Interpolation method for generously-monotonous rocesses is entered. Conditions and statements of interpolation theorems concern he xed stochastic process, which diers from the classical results.