965 resultados para statistical hypotheses


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and Aims It is an enduring question as to the mechanisms leading to the high diversity and the processes producing endemics with unusual morphologies in the Himalayan alpine region. In the present study, the phylogenetic relationships and origins of three such endemic genera were analysed, Dolomiaea, Diplazoptilon and Xanthopappus, all in the tribe Cardueae of Asteraceae.Methods The nuclear rDNA internal transcribed spacer (ITS) and plastid trnL-F and psbA-trnH regions of these three genera were sequenced. The same regions for other related genera in Cardueae were also sequenced or downloaded from GenBank. Phylogenetic trees were constructed from individual and combined data sets of the three types of sequences using maximum parsimony, maximum likelihood and Bayesian analyses.Key Results The phylogenetic tree obtained allowed earlier hypotheses concerning the relationships of these three endemic genera based on gross morphology to be rejected. Frolovia and Saussurea costus were deeply nested within Dolomiaea, and the strong statistical support for the Dolomiaea-Frolovia clade suggested that circumscription of Dolomiaea should be more broadly redefined. Diplazoptilon was resolved as sister to Himalaiella, and these two together are sister to Lipschitziella. The clade comprising these three genera is sister to Jurinea, and together these four genera are sister to the Dolomiaea-Frolovia clade. Xanthopappus, previously hypothesized to be closely related to Carduus, was found to be nested within a well-supported but not fully resolved Onopordum group with Alfredia, Ancathia, Lamyropappus, Olgaea, Synurus and Syreitschikovia, rather than the Cardinis group. The crude dating based on ITS sequence divergence revealed that the divergence time of Dolomiaea-Frolovia from its sister group probably occurred 13.6-12.2 million years ago (Ma), and the divergence times of the other two genera, Xanthopappus and Diplazoptilon, from their close relatives around 5.7-4.7 Ma and 2.0-1.6 Ma, respectively.Conclusions The findings provide an improved understanding of the intergeneric relationships in Cardueae. The crude calibration of lineages indicates that the uplifts of the Qiinghai -Tibetan Plateau since the Miocene might have served as a continuous stimulus for the production of these morphologically aberrant endemic elements of the Himalayan flora.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

I describe an exploration criterion that attempts to minimize the error of a learner by minimizing its estimated squared bias. I describe experiments with locally-weighted regression on two simple kinematics problems, and observe that this "bias-only" approach outperforms the more common "variance-only" exploration approach, even in the presence of noise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an image-based approach to infer 3D structure parameters using a probabilistic "shape+structure'' model. The 3D shape of a class of objects may be represented by sets of contours from silhouette views simultaneously observed from multiple calibrated cameras. Bayesian reconstructions of new shapes can then be estimated using a prior density constructed with a mixture model and probabilistic principal components analysis. We augment the shape model to incorporate structural features of interest; novel examples with missing structure parameters may then be reconstructed to obtain estimates of these parameters. Model matching and parameter inference are done entirely in the image domain and require no explicit 3D construction. Our shape model enables accurate estimation of structure despite segmentation errors or missing views in the input silhouettes, and works even with only a single input view. Using a dataset of thousands of pedestrian images generated from a synthetic model, we can perform accurate inference of the 3D locations of 19 joints on the body based on observed silhouette contours from real images.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We formulate and interpret several multi-modal registration methods in the context of a unified statistical and information theoretic framework. A unified interpretation clarifies the implicit assumptions of each method yielding a better understanding of their relative strengths and weaknesses. Additionally, we discuss a generative statistical model from which we derive a novel analysis tool, the "auto-information function", as a means of assessing and exploiting the common spatial dependencies inherent in multi-modal imagery. We analytically derive useful properties of the "auto-information" as well as verify them empirically on multi-modal imagery. Among the useful aspects of the "auto-information function" is that it can be computed from imaging modalities independently and it allows one to decompose the search space of registration problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Toivonen, H., Srinivasan, A., King, R. D., Kramer, S. and Helma, C. (2003) Statistical Evaluation of the Predictive Toxicology Challenge 2000-2001. Bioinformatics 19: 1183-1193

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND:Blood lipid levels including low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglycerides (TG) are highly heritable. Genome-wide association is a promising approach to map genetic loci related to these heritable phenotypes.METHODS:In 1087 Framingham Heart Study Offspring cohort participants (mean age 47 years, 52% women), we conducted genome-wide analyses (Affymetrix 100K GeneChip) for fasting blood lipid traits. Total cholesterol, HDL-C, and TG were measured by standard enzymatic methods and LDL-C was calculated using the Friedewald formula. The long-term averages of up to seven measurements of LDL-C, HDL-C, and TG over a ~30 year span were the primary phenotypes. We used generalized estimating equations (GEE), family-based association tests (FBAT) and variance components linkage to investigate the relationships between SNPs (on autosomes, with minor allele frequency [greater than or equal to]10%, genotypic call rate [greater than or equal to]80%, and Hardy-Weinberg equilibrium p [greater than or equal to] 0.001) and multivariable-adjusted residuals. We pursued a three-stage replication strategy of the GEE association results with 287 SNPs (P < 0.001 in Stage I) tested in Stage II (n ~1450 individuals) and 40 SNPs (P < 0.001 in joint analysis of Stages I and II) tested in Stage III (n~6650 individuals).RESULTS:Long-term averages of LDL-C, HDL-C, and TG were highly heritable (h2 = 0.66, 0.69, 0.58, respectively; each P < 0.0001). Of 70,987 tests for each of the phenotypes, two SNPs had p < 10-5 in GEE results for LDL-C, four for HDL-C, and one for TG. For each multivariable-adjusted phenotype, the number of SNPs with association p < 10-4 ranged from 13 to 18 and with p < 10-3, from 94 to 149. Some results confirmed previously reported associations with candidate genes including variation in the lipoprotein lipase gene (LPL) and HDL-C and TG (rs7007797; P = 0.0005 for HDL-C and 0.002 for TG). The full set of GEE, FBAT and linkage results are posted at the database of Genotype and Phenotype (dbGaP). After three stages of replication, there was no convincing statistical evidence for association (i.e., combined P < 10-5 across all three stages) between any of the tested SNPs and lipid phenotypes.CONCLUSION:Using a 100K genome-wide scan, we have generated a set of putative associations for common sequence variants and lipid phenotypes. Validation of selected hypotheses in additional samples did not identify any new loci underlying variability in blood lipids. Lack of replication may be due to inadequate statistical power to detect modest quantitative trait locus effects (i.e., < 1% of trait variance explained) or reduced genomic coverage of the 100K array. GWAS in FHS using a denser genome-wide genotyping platform and a better-powered replication strategy may identify novel loci underlying blood lipids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate knowledge of traffic demands in a communication network enables or enhances a variety of traffic engineering and network management tasks of paramount importance for operational networks. Directly measuring a complete set of these demands is prohibitively expensive because of the huge amounts of data that must be collected and the performance impact that such measurements would impose on the regular behavior of the network. As a consequence, we must rely on statistical techniques to produce estimates of actual traffic demands from partial information. The performance of such techniques is however limited due to their reliance on limited information and the high amount of computations they incur, which limits their convergence behavior. In this paper we study strategies to improve the convergence of a powerful statistical technique based on an Expectation-Maximization iterative algorithm. First we analyze modeling approaches to generating starting points. We call these starting points informed priors since they are obtained using actual network information such as packet traces and SNMP link counts. Second we provide a very fast variant of the EM algorithm which extends its computation range, increasing its accuracy and decreasing its dependence on the quality of the starting point. Finally, we study the convergence characteristics of our EM algorithm and compare it against a recently proposed Weighted Least Squares approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A probabilistic, nonlinear supervised learning model is proposed: the Specialized Mappings Architecture (SMA). The SMA employs a set of several forward mapping functions that are estimated automatically from training data. Each specialized function maps certain domains of the input space (e.g., image features) onto the output space (e.g., articulated body parameters). The SMA can model ambiguous, one-to-many mappings that may yield multiple valid output hypotheses. Once learned, the mapping functions generate a set of output hypotheses for a given input via a statistical inference procedure. The SMA inference procedure incorporates an inverse mapping or feedback function in evaluating the likelihood of each of the hypothesis. Possible feedback functions include computer graphics rendering routines that can generate images for given hypotheses. The SMA employs a variant of the Expectation-Maximization algorithm for simultaneous learning of the specialized domains along with the mapping functions, and approximate strategies for inference. The framework is demonstrated in a computer vision system that can estimate the articulated pose parameters of a human’s body or hands, given silhouettes from a single image. The accuracy and stability of the SMA are also tested using synthetic images of human bodies and hands, where ground truth is known.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate knowledge of traffic demands in a communication network enables or enhances a variety of traffic engineering and network management tasks of paramount importance for operational networks. Directly measuring a complete set of these demands is prohibitively expensive because of the huge amounts of data that must be collected and the performance impact that such measurements would impose on the regular behavior of the network. As a consequence, we must rely on statistical techniques to produce estimates of actual traffic demands from partial information. The performance of such techniques is however limited due to their reliance on limited information and the high amount of computations they incur, which limits their convergence behavior. In this paper we study a two-step approach for inferring network traffic demands. First we elaborate and evaluate a modeling approach for generating good starting points to be fed to iterative statistical inference techniques. We call these starting points informed priors since they are obtained using actual network information such as packet traces and SNMP link counts. Second we provide a very fast variant of the EM algorithm which extends its computation range, increasing its accuracy and decreasing its dependence on the quality of the starting point. Finally, we evaluate and compare alternative mechanisms for generating starting points and the convergence characteristics of our EM algorithm against a recently proposed Weighted Least Squares approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate that if two probability distributions D and E of sufficiently small min-entropy have statistical difference ε, then the direct-product distributions D^l and E^l have statistical difference at least roughly ε\s√l, provided that l is sufficiently small, smaller than roughly ε^{4/3}. Previously known bounds did not work for few repetitions l, requiring l>ε^2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new deformable shape-based method for color region segmentation is described. The method includes two stages: over-segmentation using a traditional color region segmentation algorithm, followed by deformable model-based region merging via grouping and hypothesis selection. During the second stage, region merging and object identification are executed simultaneously. A statistical shape model is used to estimate the likelihood of region groupings and model hypotheses. The prior distribution on deformation parameters is precomputed using principal component analysis over a training set of region groupings. Once trained, the system autonomously segments deformed shapes from the background, while not merging them with similarly colored adjacent objects. Furthermore, the recovered parametric shape model can be used directly in object recognition and comparison. Experiments in segmentation and image retrieval are reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An approach for estimating 3D body pose from multiple, uncalibrated views is proposed. First, a mapping from image features to 2D body joint locations is computed using a statistical framework that yields a set of several body pose hypotheses. The concept of a "virtual camera" is introduced that makes this mapping invariant to translation, image-plane rotation, and scaling of the input. As a consequence, the calibration matrices (intrinsics) of the virtual cameras can be considered completely known, and their poses are known up to a single angular displacement parameter. Given pose hypotheses obtained in the multiple virtual camera views, the recovery of 3D body pose and camera relative orientations is formulated as a stochastic optimization problem. An Expectation-Maximization algorithm is derived that can obtain the locally most likely (self-consistent) combination of body pose hypotheses. Performance of the approach is evaluated with synthetic sequences as well as real video sequences of human motion.