934 resultados para starch granules
Resumo:
Separation of Mussorie rock phosphate (P2O5 = 20%) from Uttar Pradesh, India, containing pyrite, calcite and other carbonaceous impurities by flotation has been successfully attempted to upgrade the phosphate values. Based on Hallimond cell flotation results of single and synthetic mineral mixtures of calcite and apatite using oleic acid and potassium phosphate, conditions were obtained for the separation of calcite from apatite which is considered to be the most difficult step in the beneficiation of calcareous phosphates. Further studies using 250 g of the mineral (−60 +150 and −150 mesh fractions, deslimed) in laboratory size Fagergren subaeration machine employed a stagewise flotation viz. carbonaceous materials using terpineol, pyrite using potassium-ethyl xanthate and calcite using oleic acid respectively. Separation was, however, found to be unsatisfactory in the absence of a depressant. Among starch, hydrofluosilicic acid and dipotassium hydrogen phosphate, which were tried as depressants for apatite in the final flotation stage, dipotassium hydrogen phosphate proved to be superior to others. However, the tests with the above fractions did not yield the required grade. This was possibly due to insufficient liberation of the phosphate mineral from the ore body and different experimental conditions due to scale up operations. Experiments conducted using −200 mesh deslimed fractions has yielded an acceptable grade of 27.6% P2O5 with a recovery of about 60%. The results have been explained in terms of the specific adsorption characteristics of phosphate ions on apatite and the liberation size of the mineral.
Resumo:
Polyamines are organic polycations that participate in various physiological functions, including cell proliferation, differentiation and apoptosis. Cellular polyamines originate from endogenous biosynthesis and exogenous sources. Their subcellular pool is under strict control, achieved by regulating their uptake and metabolism. Polyamine-induced proteins called antizymes (AZ) act as key regulators of intracellular polyamine concentration. They regulate both the transport of polyamines and the activity and degradation of ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine biosynthesis. AZs themselves are negatively regulated by antizyme inhibitor (AZIN). AZIN functions as a positive regulator of cellular polyamine homeostasis, which by binding to AZs reactivates ODC and induces the uptake of polyamines. In various pathological conditions, including cancer, polyamine levels are misregulated. Polyamine homeostasis has therefore become an attractive target for therapeutic interventions and it is thus crucial to characterize the molecular basis underlying the homeostatic regulation. A novel human AZIN-resembling protein was previously identified in our group. The purpose of this study was to elucidate the function and distribution of this protein, termed as an antizyme inhibitor 2 (AZIN2). According to my results, AZIN2 functions as a novel regulator of polyamine homeostasis. It shows no enzymatic activity, but instead it binds AZs and negates their activity, which subsequently leads to reactivation of ODC and inhibition of its degradation. Expression of AZIN2 is restricted to terminally differentiated cells, such as mast cells (MC) and neurosecretory cells. In these actively secreting cell types, AZIN2 localizes to subcellular vesicles or granules where its function is important for the vesicle-mediated secretion. In MCs, AZIN2 localizes to the serotonin-containing subset of MC granules, and its expression is coupled to MC activation. The functional role of polyamines as potential mediators of MC activity was also investigated, and it was observed that the secretion of serotonin is selectively dependent on activation of ODC. In neurosecretory cells, AZIN2-positive vesicles localize mainly to the trans-Golgi network (TGN). Depletion of AZIN2 or cellular polyamines causes selective fragmentation of the TGN and retards secretion of proteins. Since addition of exogenous polyamines reverses these effects, the data indicate that AZIN2 and its downstream effectors, polyamines, are functionally implicated in the regulation of secretory vesicle transport. My studies therefore reveal a novel function for polyamines as modulators of both constitutive and regulated secretion. Based on the results, I propose that the role of AZIN2 is to act as a local in situ activator of polyamine biosynthesis.
Resumo:
The production of adequate agricultural outputs to support the growing human population places great demands on agriculture, especially in light of ever-greater restrictions on input resources. Sorghum is a drought-adapted cereal capable of reliable production where other cereals fail, and thus represents a good candidate to address food security as agricultural inputs of water and arable land grow scarce. A long-standing issue with sorghum grain is that it has an inherently lower digestibility. Here we show that a low-frequency allele type in the starch metabolic gene, pullulanase, is associated with increased digestibility, regardless of genotypic background. We also provide evidence that the beneficial allele type is not associated with deleterious pleiotropic effects in the modern field environment. We argue that increasing the digestibility of an adapted crop is a viable way forward towards addressing food security while maximizing water and land-use efficiency.
Resumo:
A study was performed to investigate the value of near infrared reflectance spectroscopy (NIRS) as an alternate method to analytical techniques for identifying QTL associated with feed quality traits. Milled samples from an F6-derived recombinant inbred Tallon/Scarlett population were incubated in the rumen of fistulated cattle, recovered, washed and dried to determine the in-situ dry matter digestibility (DMD). Both pre- and post-digestion samples were analysed using NIRS to quantify key quality components relating to acid detergent fibre, starch and protein. This phenotypic data was used to identify trait associated QTL and compare them to previously identified QTL. Though a number of genetic correlations were identified between the phenotypic data sets, the only correlation of most interest was between DMD and starch digested (r = -0.382). The significance of this genetic correlation was that the NIRS data set identified a putative QTL on chromosomes 7H (LOD = 3.3) associated with starch digested. A QTL for DMD occurred in the same region of chromosome 7H, with flanking markers fAG/CAT63 and bPb-0758. The significant correlation and identification of this putative QTL, highlights the potential of technologies like NIRS in QTL analysis.
Resumo:
'Honey Gold' mango is a relatively new cultivar in Australia, with an appealing skin colour and a sweet fibre-free flesh. However, fruit can develop 'under-skin browning' (USB), which appears several days after packing as a distinct 'bruise'-like discolouration under the epidermis and can affect large areas of the fruit surface. We investigated the anatomy of USB and the impact of post-harvest fruit handling conditions on the disorder. Starch accumulated around the resin canals and discoloured cells in the affected area, with no visible change to the cuticle or epidermis. Delays of 1 d at ambient temperature (27 degrees - 35 degrees C) before packing, and 2 d at 18 degrees - 20 degrees C (after packing), before placing fruit at 12 degrees - 14 degrees C and road transportation, reduced the incidence of USB by 83% compared to placing fruit at 12 degrees - 14 degrees C within 13 h of picking. The incidence of USB was 88 100% higher in fruit that were cooled to 12 degrees - 14 degrees C within 13 h of picking, then commercially road-freighted for 4 d at 12 degrees - 14 degrees C, than in fruit held under similar temperature conditions, but not road-freighted. Wrapping each fruit in bubble-wrap to minimise direct contact with other fruit, with the plastic insert, or with the cardboard tray, reduced the incidence of USB by 84% after road-freight compared to not using bubble-wrap. These results suggest that USB is a unique disorder of mango skin associated with a rapid post-harvest reduction in temperature, from high ambient temperatures to 12 degrees - 14 degrees C, and with physical damage during road-freight.
Resumo:
African indigenous foods have received limited research. Most of these indigenous foods are fermented and they form part of the rich nutritional culture of many groups in African countries. The industrialization and commercialisation of these indigenous African fermented foods should be preceded by a thorough scientific knowledge of their processing which can be vital in the elimination of hunger and poverty. This study highlighted emerging developments and the microbiology of cereal-based and cassava-based food products that constitute a major part of the human diet in most African countries. In addition, investigations were also carried out on the coagulant of the Calotropis procera plant used in traditional production of Nigerian Wara cheese and on the effects of adding a nisin producing Lactococcus lactis strain originating from human milk to Nigerian Wara cheese. Fermented cereal-based food such as ogi utilize popular African and readily available grains maize, millet or sorghum as substrates and is popular as a weaning diet in infants. In this study, the bulkiness caused by starch gelatinization was solved by amylase treatments in the investigation on cooked and fermented oat bran porridge. A similar treatment could reduce the viscosity of any cereal porridge. The properties of the Sodom apple leaves (Calotropis procera) extract in cheesemaking were studied. C. procera was affected by monovalent (K+ and Na+) and divalent (Mg2+ and Ca2+) cations during coagulation. The rennet strength of this coagulant was found to be 7 % compared to animal rennet at 35 °C. Increasing the incubation temperature to 70 °C increased the rennet strength 28-fold. The molecular weight of the partially purified protease was determined by SDS-PAGE and was confirmed by Zymography to be approximately 60 kilodaltons. The high proteolytic activity at 70 °C supported the suitability of the protease enzyme as a coagulant in future commercial production of Nigerian Wara cheese. It was also possible to extend the shelf life of Wara cheese by a nisin producing lactic acid bacteria Lactococcus lactis LAC309. The levels of nisin in both whey and curd fractions of Wara were investigated, results showed a 3 log reduction of toxicogenic Bacillus licheniformis spiked on Wara after 3 days. These studies are the first in Finland to promote the advancement of scientific knowledge in African foods. Recognizing these indigenous food products and an efficient transfer of technology from the developed countries to industrialize them are necessary towards a successful realization of the United Nations Millenium Development Program.
Resumo:
Maize is one of the most important crops in the world. The products generated from this crop are largely used in the starch industry, the animal and human nutrition sector, and biomass energy production and refineries. For these reasons, there is much interest in figuring the potential grain yield of maize genotypes in relation to the environment in which they will be grown, as the productivity directly affects agribusiness or farm profitability. Questions like these can be investigated with ecophysiological crop models, which can be organized according to different philosophies and structures. The main objective of this work is to conceptualize a stochastic model for predicting maize grain yield and productivity under different conditions of water supply while considering the uncertainties of daily climate data. Therefore, one focus is to explain the model construction in detail, and the other is to present some results in light of the philosophy adopted. A deterministic model was built as the basis for the stochastic model. The former performed well in terms of the curve shape of the above-ground dry matter over time as well as the grain yield under full and moderate water deficit conditions. Through the use of a triangular distribution for the harvest index and a bivariate normal distribution of the averaged daily solar radiation and air temperature, the stochastic model satisfactorily simulated grain productivity, i.e., it was found that 10,604 kg ha(-1) is the most likely grain productivity, very similar to the productivity simulated by the deterministic model and for the real conditions based on a field experiment. © 2012 American Society of Agricultural and Biological Engineers.
Resumo:
Barley (Hordeum vulgare) is a major feed source for the intensive livestock industry. Competitiveness against other cereal grains depends largely on the price per unit of expressed feed quality. The traits which contribute to feed quality in barley are largely quantitative in nature but little is known about their genetic control. A study to identify the quantitative trait loci (QTLs) associated with feed quality was performed using a F6-derived recombinant inbred barley population. Samples from each line were incubated in the rumen of fistulated cattle, recovered, washed and dried for determination of in situ dry matter digestibility. Additionally, both pre- and post-digestion samples were analysed to quantify the content of key quality components relating to acid detergent fibre, total starch and protein. The data was used to identify trait-associated QTLs. Genetic analysis identified significant QTLs on chromosomes 2H, 5H and 7H. Genetic markers linked to these QTL should provide an effective tool for the selection and improvement of feed barley in the future.
Resumo:
When cattle are fed grain, acidotic ruminal conditions and decreased efficiency in starch utilisation can result from the rapid production and accumulation of lactic acid in the rumen. The efficacy of drenching cattle with Megasphaera elsdenii and Ruminococcus bromii to improve animal performance was investigated. A feedlot trial was undertaken with 80 Bos indicus crossbred steers (initial liveweight 347.1 (s.d. 31.7) kg) in 10 pens in a randomised complete block design. An empty-pen-buffer was maintained between treated (inoculated) and untreated (control) groups to avoid transfer of inoculant bacteria to the control steers. Inoculated steers were orally drenched with M. elsdenii YE34 and R. bromii YE282, and populations increased rapidly over 3-14 days. The steers were fed for a total of 70 days with commercial, barley-based, feedlot rations. High growth rates (1.91 kg per day) were achieved throughout the experiment in both the inoculated and control steers. Intakes averaged 21.3 g dry matter (DM) per kg liveweight per day. There was probably no acidosis achieved in this trial following challenge (i.e. no change in pH occurred). There were no differences in any production or carcass measurements between the control and inoculated steers overall. However, the control group acquired dense ruminal populations of M. elsdenii by Day 14, while R. bromii populations established at high densities within the first 2 weeks but then declined and were undetectable by Day 50. R. bromii appears to be only transiently dominant, and once its dominance waned, it appeared that Ruminobacter spp. established in the rumen. Ruminobacter spp. became dominant between 14 and 28 days in all the steers examined and persisted through to the end of the study. These Ruminobacter spp. may be of future interest in the development of probiotics for grain-fed cattle.
Resumo:
BACKGROUND: Twenty-two diverse sorghum landraces, classified as normal and opaque types obtained from Ethiopia, were characterised for grain quality parameters using near infra-red spectroscopy (NIRS), chemical and Rapid Visco-Analyzer (RVA) characteristics. RESULTS: Protein content ranged from 77 to 182 g kg-1, and starch content from 514 to 745 g kg(-1). The NIRS analysis indicated the pig faecal digestible energy range from 14.6 to 15.7MJ kg(-1) as fed, and the ileal digestible energy range from 11.3 to 13.9MJ kg(-1) as fed. The normal sorghums had higher digestible energy than the opaque sorghums, which exhibited lower RVA viscosities, and higher pasting temperatures and setback ratios. The RVA parameterswere positively correlated with the starch content and negatively correlated with the protein content. The normal and opaque types formed two distinct groups based on principal component and cluster analyses. CONCLUSION: The landraces were different for the various grain quality parameters with some landraces displaying unique RVA and NIRS profiles. This study will guide utilisation of the sorghum landraces in plant improvement programs, and provides a basis for further studies into how starch and other constituents behave in and affect the properties of these landraces. (C) 2011 Society of Chemical Industry
Resumo:
It has long been recognized that mast cells occur throughout connective tissues. Histologic studies have revealed that such cells release their granules into the surrounding environment upon exposure to both immunologic and nonimmunologic stimuli. By microscopy these extracellular granules appeared to be phagocytosed by fibroblasts and by blood-borne phagocytic cells as they entered the site of mast cell degranulation. Such in vivo observations led to the suggestion that mast cells both altered connective tissue components and influenced fibroblast function through these discharged granules. Recent in vitro studies using cultured fibroblasts and isolated mast cells and mast cell granules have confirmed both these hypotheses. In addition, such studies have also documented that fibroblasts degrade ingested mast cell granules. Such studies document that a number of critical interactions may occur between mast cells and connective tissue components.
Resumo:
Grain protein composition determines quality traits, such as value for food, feedstock, and biomaterials uses. The major storage proteins in sorghum are the prolamins, known as kafirins. Located primarily on the periphery of the protein bodies surrounding starch, cysteine-rich beta- and gamma-kafirins may limit enzymatic access to internally positioned alpha-kafirins and starch. An integrated approach was used to characterize sorghum with allelic variation at the kafirin loci to determine the effects of this genetic diversity on protein expression. Reversed-phase high performance liquid chromatography and lab-on-a-chip analysis showed reductions in alcohol-soluble protein in beta-kafirin null lines. Gel-based separation and liquid chromatography-tandem mass spectrometry identified a range of redox active proteins affecting storage protein biochemistry. Thioredoxin, involved in the processing of proteins at germination, has reported impacts on grain digestibility and was differentially expressed across genotypes. Thus, redox states of endosperm proteins, of which kafirins are a subset, could affect quality traits in addition to the expression of proteins.
Resumo:
Sorghum is a staple food for half a billion people and, through growth on marginal land with minimal inputs, is an important source of feed, forage and increasingly, biofuel feedstock. Here we present information about non-cellulosic cell wall polysaccharides in a diverse set of cultivated and wild Sorghum bicolor grains. Sorghum grain contains predominantly starch (64–76) but is relatively deficient in other polysaccharides present in wheat, oats and barley. Despite overall low quantities, sorghum germplasm exhibited a remarkable range in polysaccharide amount and structure. Total (1,3;1,4)-β-glucan ranged from 0.06 to 0.43 (w/w) whilst internal cellotriose:cellotetraose ratios ranged from 1.8 to 2.9:1. Arabinoxylan amounts fell between 1.5 and 3.6 (w/w) and the arabinose:xylose ratio, denoting arabinoxylan structure, ranged from 0.95 to 1.35. The distribution of these and other cell wall polysaccharides varied across grain tissues as assessed by electron microscopy. When ten genotypes were tested across five environmental sites, genotype (G) was the dominant source of variation for both (1,3;1,4)-β-glucan and arabinoxylan content (69–74), with environment (E) responsible for 5–14. There was a small G × E effect for both polysaccharides. This study defines the amount and spatial distribution of polysaccharides and reveals a significant genetic influence on cell wall composition in sorghum grain.
Resumo:
Increased consumption of dark-coloured fruits and vegetables may mitigate metabolic syndrome. This study has determined the changes in metabolic parameters, and in cardiovascular and liver structure and function, following chronic administration of either cyanidin 3-glucoside (CG) or Queen Garnet plum juice (QG) containing cyanidin glycosides to rats fed either a corn starch (C) or a high-carbohydrate, high-fat (H) diet. Eight to nine-week-old male Wistar rats were randomly divided into six groups for 16-week feeding with C, C with CG or QG, H or H with CG or QG. C or H were supplemented with CG or QG at a dose of ∼8 mg/kg/day cyanidin glycosides from week 8 to 16. H rats developed signs of metabolic syndrome including visceral adiposity, impaired glucose tolerance, hypertension, cardiovascular remodelling, increased collagen depots in left ventricle, non-alcoholic fatty liver disease, increased plasma liver enzymes and increased inflammatory cell infiltration in the heart and liver. Both CG and QG reversed these cardiovascular, liver and metabolic signs. However, no intact anthocyanins or common methylated/conjugated metabolites could be detected in the plasma samples and plasma hippuric acid concentrations were unchanged. Our results suggest CG is the most likely mediator of the responses to QG but that further investigation of the pharmacokinetics of oral CG in rats is required.
Resumo:
Serial Block-Face Scanning Electron Microscopy (SBF-SEM) was used in this study to examine the ultrastructural morphology of Penaeus monodon spermatozoa. SBF-SEM provided a large dataset of sequential electron-microscopic-level images that facilitated comprehensive ultrastructural observations and three-dimensional reconstructions of the sperm cell. Reconstruction divulged a nuclear region of the spermatophoral spermatozoon filled with decondensed chromatin but with two apparent levels of packaging density. In addition, the nuclear region contained, not only numerous filamentous chromatin elements with dense microregions, but also large centrally gathered granular masses. Analysis of the sperm cytoplasm revealed the presence of degenerated mitochondria and membrane-less dense granules. A large electron-lucent vesicle and "arch-like" structures were apparent in the subacrosomal area, and an acrosomal core was found in the acrosomal vesicle. The spermatozoal spike arose from the inner membrane of the acrosomal vesicle, which was slightly bulbous in the middle region of the acrosomal vesicle, but then extended distally into a broad dense plate and to a sharp point proximally. This study has demonstrated that SBF-SEM is a powerful technique for the 3D ultrastructural reconstruction of prawn spermatozoa, that will no doubt be informative for further studies of sperm assessment, reproductive pathology and the spermiocladistics of penaeid prawns, and other decapod crustaceans. J. Morphol., 2016. (c) 2016 Wiley Periodicals, Inc.