990 resultados para spectral simulation
Resumo:
Cultivation and cropping of soils results in a decline in soil organic carbon and soil nitrogen, and can lead to reduced crop yields. The CENTURY model was used to simulate the effects of continuous cultivation and cereal cropping on total soil organic matter (C and N), carbon pools, nitrogen mineralisation, and crop yield from 6 locations in southern Queensland. The model was calibrated for each replicate from the original datasets, allowing comparisons for each replicate rather than site averages. The CENTURY model was able to satisfactorily predict the impact of long-term cultivation and cereal cropping on total organic carbon, but was less successful in simulating the different fractions and nitrogen mineralisation. The model firstly over-predicted the initial (pre-cropping) soil carbon and nitrogen concentration of the sites. To account for the unique shrinking and swelling characteristics of the Vertosol soils, the default annual decomposition rates of the slow and passive carbon pools were doubled, and then the model accurately predicted initial conditions. The ability of the model to predict carbon pool fractions varied, demonstrating the difficulty inherent in predicting the size of these conceptual pools. The strength of the model lies in the ability to closely predict the starting soil organic matter conditions, and the ability to predict the impact of clearing, cultivation, fertiliser application, and continuous cropping on total soil carbon and nitrogen.
Resumo:
This research deals with the development of a Solar-Powered UAV designed for remote sensing, in particular to the development of the autopilot sub-system and path planning. The design of the Solar-Powered UAS followed a systems engineering methodology, by first defining system architecture, and selecting each subsystem. Validation tests and integration of autopilot is performed, in order to evaluate the performances of each subsystem and to obtain a global operational system for data collection missions. The flight tests planning and simulation results are also explored in order to verify the mission capabilities using an autopilot on a UAS. The important aspect of this research is to develop a Solar-Powered UAS for the purpose of data collection and video monitoring, especially data and images from the ground; transmit to the GS (Ground Station), segment the collected data, and afterwards analyze it with a Matlab code.
Resumo:
This report describes a methodology for the design and coupling of a proton exchange membrane (PEM) Fuel Cell to an Unmanned Aerial Vehicle (UAV). The report summarizes existing work in the field, the type of UAV and the mission requirements, design the fuel cell system, simulation environment, and compares endurance and range to when the aircraft is fitted with a conventional internal combustion engine (ICE).
Resumo:
Several intelligent transportation systems (ITS) were used with an advanced driving simulator to assess its influence on driving behavior. Three types of ITS interventions were tested: video in vehicle, audio in vehicle, and on-road flashing marker. The results from the driving simulator were inputs for a developed model that used traffic microsimulation (VISSIM 5.4) to assess the safety interventions. Using a driving simulator, 58 participants were required to drive through active and passive crossings with and without an ITS device and in the presence or absence of an approaching train. The effect of changes in driver speed and compliance rate was greater at passive crossings than at active crossings. The slight difference in speed of drivers approaching ITS devices indicated that ITS helped drivers encounter crossings in a safer way. Since the traffic simulation was not able to replicate a dynamic speed change or a probability of stopping that varied depending on ITS safety devices, some modifications were made to the traffic simulation. The results showed that exposure to ITS devices at active crossings did not influence drivers’ behavior significantly according to the traffic performance indicator, such as delay time, number of stops, speed, and stopped delay. However, the results of traffic simulation for passive crossings, where low traffic volumes and low train headway normally occur, showed that ITS devices improved overall traffic performance.
Resumo:
Self-contained Non-Equilibrium Molecular Dynamics (NEMD) simulations using Lennard-Jones potentials were performed to identify the origin and mechanisms of atomic scale interfacial behavior between sliding metals. The mixing sequence and velocity profiles were compared via MD simulations for three cases, viz.: sell-mated, similar and hard-softvcrystal pairs. The results showed shear instability, atomic scale mixing, and generation of eddies at the sliding interface. Vorticity at the interface suggests that atomic flow during sliding is similar to fluid flow under Kelvin-Helmholtz instability and this is supported by velocity profiles from the simulations. The initial step-function velocity profile spreads during sliding. However the velocity profile does not change much at later stages of the simulation and it eventually stops spreading. The steady state friction coefficient during simulation was monitored as a function of sliding velocity. Frictional behavior can be explained on the basis of plastic deformation and adiabatic effects. The mixing layer growth kinetics was also investigated.
Resumo:
In this work an attempt has been made to evaluate the seismic hazard of South India (8.0 degrees N-20 degrees N; 72 degrees E-88 degrees E) based on the probabilistic seismic hazard analysis (PSHA). The earthquake data obtained from different sources were declustered to remove the dependent events. A total of 598 earthquakes of moment magnitude 4 and above were obtained from the study area after declustering, and were considered for further hazard analysis. The seismotectonic map of the study area was prepared by considering the faults, lineaments and the shear zones in the study area which are associated with earthquakes of magnitude 4 and above. For assessing theseismic hazard, the study area was divided into small grids of size 0.1 degrees x0.1 degrees, and the hazard parameters were calculated at the centre of each of these grid cells by considering all the seismic sources with in a radius of 300 km. Rock level peak horizontal acceleration (PHA) and spectral acceleration (SA) values at 1 corresponding to 10% and 2% probability of exceedance in 50 years have been calculated for all the grid points. The contour maps showing the spatial variation of these values are presented here. Uniform hazard response spectrum (UHRS) at rock level for 5% damping and 10% and 2% probability of exceedance in 50 years were also developed for all the grid points. The peak ground acceleration (PGA) at surface level was calculated for the entire South India for four different site classes. These values can be used to find the PGA values at any site in South India based on site class at that location. Thus, this method can be viewed as a simplified method to evaluate the PGA values at any site in the study area.
Resumo:
In this paper, we discuss the measurements of spectral surface reflectance (rho(s)(lambda)) in the wavelength range 350-2500 nm measured using a spectroradiometer onboard a low-flying aircraft over Bangalore (12.95 degrees N, 77.65 degrees E), an urban site in southern India. The large discrepancies in the retrieval of aerosol propertiesover land by the Moderate-Resolution Imaging Spectroradiometer (MODIS), which could be attributed to the inaccurate estimation of surface reflectance at many sites in India and elsewhere, provided motivation for this paper. The aim of this paper was to verify the surface reflectance relationships assumed by the MODIS aerosol algorithm for the estimation of surface reflectance in the visible channels (470 and 660 nm) from the surface reflectance at 2100 nm for aerosol retrieval over land. The variety of surfaces observed in this paper includes green and dry vegetations, bare land, and urban surfaces. The measuredreflectance data were first corrected for the radiative effects of atmosphere lying between the ground and aircraft using the Second Simulation of Satellite Signal in the Solar Spectrum (6S) radiative transfer code. The corrected surface reflectance in the MODIS's blue (rho(s)(470)), red (rho(s)(660)), and shortwave-infrared (SWIR) channel (rho(s)(2100)) was linearly correlated. We found that the slope of reflectance relationship between 660 and 2100 nm derived from the forward scattering data was 0.53 with an intercept of 0.07, whereas the slope for the relationship between the reflectance at 470 and 660 nm was 0.85. These values are much higher than the slope (similar to 0.49) for either wavelengths assumed by the MODIS aerosol algorithm over this region. The reflectance relationship for the backward scattering data has a slope of 0.39, with an intercept of 0.08 for 660 nm, and 0.65, with an intercept of 0.08 for 470 nm. The large values of the intercept (which is very small in the MODIS reflectance relationships) result in larger values of absolute surface reflectance in the visible channels. The discrepancy between the measured and assumed surface reflectances could lead to error in the aerosol retrieval. The reflectance ratio (rho(s)(660)/rho(s)(2100)) showed a clear dependence on the N D V I-SWIR where the ratio increased from 0.5 to 1 with an increase in N V I-SWIR from 0 to 0.5. The high correlation between the reflectance at SWIR wavelengths (2100, 1640, and 1240 nm) indicated an opportunity to derive the surface reflectance and, possibly, aerosol properties at these wavelengths. We need more experiments to characterize the surface reflectance and associated inhomogeneity of land surfaces, which play a critical role in the remote sensing of aerosols over land.
Resumo:
Several N,N-²-arylalkyl thioureas were examined with 1H-NMR and i.r. spectra in order to study the conformation of the -NHCSNH- group. The influence of temperature and substituents on the chemical shift of the N---H protons has been investigated. Formation of a strong intramolecular hydrogen bond stabilizes the trans-cis conformation for most systems, while for the others the prevalence of different rotational isomers can be postulated. The influence of the steric effect on hydrogen bonding and molecular conformation is discussed.
Resumo:
Varying the spatial distribution of applied nitrogen (N) fertilizer to match demand in crops has been shown to increase profits in Australia. Better matching the timing of N inputs to plant requirements has been shown to improve nitrogen use efficiency and crop yields and could reduce nitrous oxide emissions from broad acre grains. Farmers in the wheat production area of south eastern Australia are increasingly splitting N application with the second timing applied at stem elongation (Zadoks 30). Spectral indices have shown the ability to detect crop canopy N status but a robust method using a consistent calibration that functions across seasons has been lacking. One spectral index, the canopy chlorophyll content index (CCCI) designed to detect canopy N using three wavebands along the "red edge" of the spectrum was combined with the canopy nitrogen index (CNI), which was developed to normalize for crop biomass and correct for the N dilution effect of crop canopies. The CCCI-CNI index approach was applied to a 3-year study to develop a single calibration derived from a wheat crop sown in research plots near Horsham, Victoria, Australia. The index was able to predict canopy N (g m-2) from Zadoks 14-37 with an r2 of 0.97 and RMSE of 0.65 g N m-2 when dry weight biomass by area was also considered. We suggest that measures of N estimated from remote methods use N per unit area as the metric and that reference directly to canopy %N is not an appropriate method for estimating plant concentration without first accounting for the N dilution effect. This approach provides a link to crop development rather than creating a purely numerical relationship. The sole biophysical input, biomass, is challenging to quantify robustly via spectral methods. Combining remote sensing with crop modelling could provide a robust method for estimating biomass and therefore a method to estimate canopy N remotely. Future research will explore this and the use of active and passive sensor technologies for use in precision farming for targeted N management.
Resumo:
A simulation model that combines biological, search and economic components is applied to the eradication of a Miconia calvescens infestation at El Arish in tropical Queensland, Australia. Information on the year M. calvescens was introduced to the site, the number of plants controlled and the timing of control, is used to show that currently there could be M. calvescens plants remaining undetected at the site, including some mature plants. Modelling results indicate that the eradication programme has had a significant impact on the population of M. calvescens, as shown by simulated results for uncontrolled and controlled populations. The model was also used to investigate the effect of changing search effort on the cost of and time to eradication. Control costs were found to be negligible over all levels of search effort tested. Importantly, results suggest eradication may be achieved within several decades, if resources are increased slightly from their current levels and if there is a long-term commitment to funding the eradication programme.
Resumo:
With the rapid development of various technologies and applications in smart grid implementation, demand response has attracted growing research interests because of its potentials in enhancing power grid reliability with reduced system operation costs. This paper presents a new demand response model with elastic economic dispatch in a locational marginal pricing market. It models system economic dispatch as a feedback control process, and introduces a flexible and adjustable load cost as a controlled signal to adjust demand response. Compared with the conventional “one time use” static load dispatch model, this dynamic feedback demand response model may adjust the load to a desired level in a finite number of time steps and a proof of convergence is provided. In addition, Monte Carlo simulation and boundary calculation using interval mathematics are applied for describing uncertainty of end-user's response to an independent system operator's expected dispatch. A numerical analysis based on the modified Pennsylvania-Jersey-Maryland power pool five-bus system is introduced for simulation and the results verify the effectiveness of the proposed model. System operators may use the proposed model to obtain insights in demand response processes for their decision-making regarding system load levels and operation conditions.
Resumo:
Isothermal-isobaric ensemble Monte Carlo simulation studies of adamantane have been carried out at different temperatures. Thermodynamic properties and radial distribution functions calculated by employing a simple potential model based on sitesite interactions show good agreement with experiment and suggest that the solid is orientationally disordered at high temperatures.
Resumo:
A numerical scheme is presented for accurate simulation of fluid flow using the lattice Boltzmann equation (LBE) on unstructured mesh. A finite volume approach is adopted to discretize the LBE on a cell-centered, arbitrary shaped, triangular tessellation. The formulation includes a formal, second order discretization using a Total Variation Diminishing (TVD) scheme for the terms representing advection of the distribution function in physical space, due to microscopic particle motion. The advantage of the LBE approach is exploited by implementing the scheme in a new computer code to run on a parallel computing system. Performance of the new formulation is systematically investigated by simulating four benchmark flows of increasing complexity, namely (1) flow in a plane channel, (2) unsteady Couette flow, (3) flow caused by a moving lid over a 2D square cavity and (4) flow over a circular cylinder. For each of these flows, the present scheme is validated with the results from Navier-Stokes computations as well as lattice Boltzmann simulations on regular mesh. It is shown that the scheme is robust and accurate for the different test problems studied.
Resumo:
Polytypes have been simulated, treating them as analogues of a one-dimensional spin-half Ising chain with competing short-range and infinite-range interactions. Short-range interactions are treated as random variables to approximate conditions of growth from melt as well as from vapour. Besides ordered polytypes up to 12R, short stretches of long-period polytypes (up to 33R) have been observed. Such long-period sequences could be of significance in the context of Frank's theory of polytypism. The form of short-range interactions employed in the study has been justified by carrying out model potential calculations.
Resumo:
Some continuity and differentiability properties of the eigenvalues and eigenfunctions of finite section normal integral operators are proved. These are the extension of corresponding results for symmetric operators ([4.], 554–566; K. B. Athreya and R. Vittal Rao, to appear; [10.], 463–471.