867 resultados para speaker clustering
Resumo:
A new distance function to compare arbitrary partitions is proposed. Clustering of image collections and image segmentation give objects to be matched. Offered metric intends for combination of visual features and metadata analysis to solve a semantic gap between low-level visual features and high-level human concept.
Resumo:
In a paper the method of complex systems and processes clustering based use of genetic algorithm is offered. The aspects of its realization and shaping of fitness-function are considered. The solution of clustering task of Ukraine areas on socio-economic indexes is represented and comparative analysis with outcomes of classical methods is realized.
Resumo:
In recent years, there has been an increas-ing interest in learning a distributed rep-resentation of word sense. Traditional context clustering based models usually require careful tuning of model parame-ters, and typically perform worse on infre-quent word senses. This paper presents a novel approach which addresses these lim-itations by first initializing the word sense embeddings through learning sentence-level embeddings from WordNet glosses using a convolutional neural networks. The initialized word sense embeddings are used by a context clustering based model to generate the distributed representations of word senses. Our learned represen-tations outperform the publicly available embeddings on 2 out of 4 metrics in the word similarity task, and 6 out of 13 sub tasks in the analogical reasoning task.
Resumo:
2000 Mathematics Subject Classification: 62H30
Resumo:
In recent years, there has been an increasing interest in learning a distributed representation of word sense. Traditional context clustering based models usually require careful tuning of model parameters, and typically perform worse on infrequent word senses. This paper presents a novel approach which addresses these limitations by first initializing the word sense embeddings through learning sentence-level embeddings from WordNet glosses using a convolutional neural networks. The initialized word sense embeddings are used by a context clustering based model to generate the distributed representations of word senses. Our learned representations outperform the publicly available embeddings on half of the metrics in the word similarity task, 6 out of 13 sub tasks in the analogical reasoning task, and gives the best overall accuracy in the word sense effect classification task, which shows the effectiveness of our proposed distributed distribution learning model.
Resumo:
This article investigates potential effects which (the recontextualisation of) interpreted discourse can have on the positioning of participants. The discursive event which forms the basis of the analysis are international press conferences which bring politicians and journalists together. The dominant question addressed is: (How) do interpreter-mediated encounters influence the positioning of participants and thus the construction of interactional and social roles? The article illustrates that methods of (critical) discourse analysis can be used to identify positioning strategies which are employed by participants in such triadic exchanges. The data come from press conferences which involve English, German, and French as source and target languages.
Resumo:
In this paper, we focus on the design of bivariate EDAs for discrete optimization problems and propose a new approach named HSMIEC. While the current EDAs require much time in the statistical learning process as the relationships among the variables are too complicated, we employ the Selfish gene theory (SG) in this approach, as well as a Mutual Information and Entropy based Cluster (MIEC) model is also set to optimize the probability distribution of the virtual population. This model uses a hybrid sampling method by considering both the clustering accuracy and clustering diversity and an incremental learning and resample scheme is also set to optimize the parameters of the correlations of the variables. Compared with several benchmark problems, our experimental results demonstrate that HSMIEC often performs better than some other EDAs, such as BMDA, COMIT, MIMIC and ECGA. © 2009 Elsevier B.V. All rights reserved.
Resumo:
Abstract Driven by the political and economic forces of cross-strait, Taiwan has become one of the major source markets for Hong Kong tourism industry since 1987. The major purposes of this study were to investigate the following factors (1) The influential factors of travel motivation, (2) The clusters of travel motivations, (3) The marketing segmentation of clusters of Taiwanese tourists to visit Hong Kong. Through ten travel agents, self-report surveys were distributed to collect data from 366 Taiwanese travelers. Hence, four push factors and six pull factors were identified as travel motivations through the factor analysis. Combined with the cluster analysis; five new groups were founded. Finally, five clusters which process unique profiles (location difference, visiting frequency, travel satisfaction, and destination loyalty) were addressed. The suggestions of developing effective market strategies to attract Taiwanese tourists to Hong Kong were also provided.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
Inscriptions: Verso: [stamped] Credit must be given to Freda Leinwand from Monkmeyer Press Photo Service.