947 resultados para spatial clustering algorithms
Resumo:
Fluorescence confocal microscopy (FCM) is now one of the most important tools in biomedicine research. In fact, it makes it possible to accurately study the dynamic processes occurring inside the cell and its nucleus by following the motion of fluorescent molecules over time. Due to the small amount of acquired radiation and the huge optical and electronics amplification, the FCM images are usually corrupted by a severe type of Poisson noise. This noise may be even more damaging when very low intensity incident radiation is used to avoid phototoxicity. In this paper, a Bayesian algorithm is proposed to remove the Poisson intensity dependent noise corrupting the FCM image sequences. The observations are organized in a 3-D tensor where each plane is one of the images acquired along the time of a cell nucleus using the fluorescence loss in photobleaching (FLIP) technique. The method removes simultaneously the noise by considering different spatial and temporal correlations. This is accomplished by using an anisotropic 3-D filter that may be separately tuned in space and in time dimensions. Tests using synthetic and real data are described and presented to illustrate the application of the algorithm. A comparison with several state-of-the-art algorithms is also presented.
Resumo:
A definition of medium voltage (MV) load diagrams was made, based on the data base knowledge discovery process. Clustering techniques were used as support for the agents of the electric power retail markets to obtain specific knowledge of their customers’ consumption habits. Each customer class resulting from the clustering operation is represented by its load diagram. The Two-step clustering algorithm and the WEACS approach based on evidence accumulation (EAC) were applied to an electricity consumption data from a utility client’s database in order to form the customer’s classes and to find a set of representative consumption patterns. The WEACS approach is a clustering ensemble combination approach that uses subsampling and that weights differently the partitions in the co-association matrix. As a complementary step to the WEACS approach, all the final data partitions produced by the different variations of the method are combined and the Ward Link algorithm is used to obtain the final data partition. Experiment results showed that WEACS approach led to better accuracy than many other clustering approaches. In this paper the WEACS approach separates better the customer’s population than Two-step clustering algorithm.
Resumo:
With the electricity market liberalization, the distribution and retail companies are looking for better market strategies based on adequate information upon the consumption patterns of its electricity consumers. A fair insight on the consumers’ behavior will permit the definition of specific contract aspects based on the different consumption patterns. In order to form the different consumers’ classes, and find a set of representative consumption patterns we use electricity consumption data from a utility client’s database and two approaches: Two-step clustering algorithm and the WEACS approach based on evidence accumulation (EAC) for combining partitions in a clustering ensemble. While EAC uses a voting mechanism to produce a co-association matrix based on the pairwise associations obtained from N partitions and where each partition has equal weight in the combination process, the WEACS approach uses subsampling and weights differently the partitions. As a complementary step to the WEACS approach, we combine the partitions obtained in the WEACS approach with the ALL clustering ensemble construction method and we use the Ward Link algorithm to obtain the final data partition. The characterization of the obtained consumers’ clusters was performed using the C5.0 classification algorithm. Experiment results showed that the WEACS approach leads to better results than many other clustering approaches.
Resumo:
Anaemia has a significant impact on child development and mortality and is a severe public health problem in most countries in sub-Saharan Africa. Nutritional and infectious causes of anaemia are geographically variable and anaemia maps based on information on the major aetiologies of anaemia are important for identifying communities most in need and the relative contribution of major causes. We investigated the consistency between ecological and individual-level approaches to anaemia mapping, by building spatial anaemia models for children aged ≤15 years using different modeling approaches. We aimed to a) quantify the role of malnutrition, malaria, Schistosoma haematobium and soil-transmitted helminths (STH) for anaemia endemicity in children aged ≤15 years and b) develop a high resolution predictive risk map of anaemia for the municipality of Dande in Northern Angola. We used parasitological survey data on children aged ≤15 years to build Bayesian geostatistical models of malaria (PfPR≤15), S. haematobium, Ascaris lumbricoides and Trichuris trichiura and predict small-scale spatial variation in these infections. The predictions and their associated uncertainty were used as inputs for a model of anemia prevalence to predict small-scale spatial variation of anaemia. Stunting, PfPR≤15, and S. haematobium infections were significantly associated with anaemia risk. An estimated 12.5%, 15.6%, and 9.8%, of anaemia cases could be averted by treating malnutrition, malaria, S. haematobium, respectively. Spatial clusters of high risk of anaemia (>86%) were identified. Using an individual-level approach to anaemia mapping at a small spatial scale, we found that anaemia in children aged ≤15 years is highly heterogeneous and that malnutrition and parasitic infections are important contributors to the spatial variation in anemia risk. The results presented in this study can help inform the integration of the current provincial malaria control program with ancillary micronutrient supplementation and control of neglected tropical diseases, such as urogenital schistosomiasis and STH infection.
Resumo:
The growing importance and influence of new resources connected to the power systems has caused many changes in their operation. Environmental policies and several well know advantages have been made renewable based energy resources largely disseminated. These resources, including Distributed Generation (DG), are being connected to lower voltage levels where Demand Response (DR) must be considered too. These changes increase the complexity of the system operation due to both new operational constraints and amounts of data to be processed. Virtual Power Players (VPP) are entities able to manage these resources. Addressing these issues, this paper proposes a methodology to support VPP actions when these act as a Curtailment Service Provider (CSP) that provides DR capacity to a DR program declared by the Independent System Operator (ISO) or by the VPP itself. The amount of DR capacity that the CSP can assure is determined using data mining techniques applied to a database which is obtained for a large set of operation scenarios. The paper includes a case study based on 27,000 scenarios considering a diversity of distributed resources in a 33 bus distribution network.
Resumo:
This paper aims to study the relationships between chromosomal DNA sequences of twenty species. We propose a methodology combining DNA-based word frequency histograms, correlation methods, and an MDS technique to visualize structural information underlying chromosomes (CRs) and species. Four statistical measures are tested (Minkowski, Cosine, Pearson product-moment, and Kendall τ rank correlations) to analyze the information content of 421 nuclear CRs from twenty species. The proposed methodology is built on mathematical tools and allows the analysis and visualization of very large amounts of stream data, like DNA sequences, with almost no assumptions other than the predefined DNA “word length.” This methodology is able to produce comprehensible three-dimensional visualizations of CR clustering and related spatial and structural patterns. The results of the four test correlation scenarios show that the high-level information clusterings produced by the MDS tool are qualitatively similar, with small variations due to each correlation method characteristics, and that the clusterings are a consequence of the input data and not method’s artifacts.
Resumo:
Anaemia is known to have an impact on child development and mortality and is a severe public health problem in most countries in sub-Saharan Africa. We investigated the consistency between ecological and individual-level approaches to anaemia mapping by building spatial anaemia models for children aged ≤15 years using different modelling approaches. We aimed to (i) quantify the role of malnutrition, malaria, Schistosoma haematobium and soil-transmitted helminths (STHs) in anaemia endemicity; and (ii) develop a high resolution predictive risk map of anaemia for the municipality of Dande in northern Angola. We used parasitological survey data for children aged ≤15 years to build Bayesian geostatistical models of malaria (PfPR≤15), S. haematobium, Ascaris lumbricoides and Trichuris trichiura and predict small-scale spatial variations in these infections. Malnutrition, PfPR≤15, and S. haematobium infections were significantly associated with anaemia risk. An estimated 12.5%, 15.6% and 9.8% of anaemia cases could be averted by treating malnutrition, malaria and S. haematobium, respectively. Spatial clusters of high risk of anaemia (>86%) were identified. Using an individual-level approach to anaemia mapping at a small spatial scale, we found that anaemia in children aged ≤15 years is highly heterogeneous and that malnutrition and parasitic infections are important contributors to the spatial variation in anaemia risk. The results presented in this study can help inform the integration of the current provincial malaria control programme with ancillary micronutrient supplementation and control of neglected tropical diseases such as urogenital schistosomiasis and STH infections.
Resumo:
In team sports, the spatial distribution of players on the field is determined by the interaction behavior established at both player and team levels. The distribution patterns observed during a game emerge from specific technical and tactical methods adopted by the teams, and from individual, environmental and task constraints that influence players' behaviour. By understanding how specific patterns of spatial interaction are formed, one can characterize the behavior of the respective teams and players. Thus, in the present work we suggest a novel spatial method for describing teams' spatial interaction behaviour, which results from superimposing the Voronoi diagrams of two competing teams. We considered theoretical patterns of spatial distribution in a well-defined scenario (5 vs 4+ GK played in a field of 20x20m) in order to generate reference values of the variables derived from the superimposed Voronoi diagrams (SVD). These variables were tested in a formal application to empirical data collected from 19 Futsal trials with identical playing settings. Results suggest that it is possible to identify a number of characteristics that can be used to describe players' spatial behavior at different levels, namely the defensive methods adopted by the players.
Resumo:
Dissertação de Mestrado, Estudos Integrados dos Oceanos, 20 de Março de 2014, Universidade dos Açores.
Resumo:
World Congress of Malacology, Universidade dos Açores, Ponta Delgada, 21-28 de julho.
Resumo:
"Conhecer o Mar dos Açores III - Fórum científico de apoio à decisão". Biblioteca Pública e Arquivo Regional João José da Graça, Horta, Faial, Açores, 19-20 de setembro de 2013.
Resumo:
This work aims at investigating the impact of treating breast cancer using different radiation therapy (RT) techniques – forwardly-planned intensity-modulated, f-IMRT, inversely-planned IMRT and dynamic conformal arc (DCART) RT – and their effects on the whole-breast irradiation and in the undesirable irradiation of the surrounding healthy tissues. Two algorithms of iPlan BrainLAB treatment planning system were compared: Pencil Beam Convolution (PBC) and commercial Monte Carlo (iMC). Seven left-sided breast patients submitted to breast-conserving surgery were enrolled in the study. For each patient, four RT techniques – f-IMRT, IMRT using 2-fields and 5-fields (IMRT2 and IMRT5, respectively) and DCART – were applied. The dose distributions in the planned target volume (PTV) and the dose to the organs at risk (OAR) were compared analyzing dose–volume histograms; further statistical analysis was performed using IBM SPSS v20 software. For PBC, all techniques provided adequate coverage of the PTV. However, statistically significant dose differences were observed between the techniques, in the PTV, OAR and also in the pattern of dose distribution spreading into normal tissues. IMRT5 and DCART spread low doses into greater volumes of normal tissue, right breast, right lung and heart than tangential techniques. However, IMRT5 plans improved distributions for the PTV, exhibiting better conformity and homogeneity in target and reduced high dose percentages in ipsilateral OAR. DCART did not present advantages over any of the techniques investigated. Differences were also found comparing the calculation algorithms: PBC estimated higher doses for the PTV, ipsilateral lung and heart than the iMC algorithm predicted.
Resumo:
Introduction: Image resizing is a normal feature incorporated into the Nuclear Medicine digital imaging. Upsampling is done by manufacturers to adequately fit more the acquired images on the display screen and it is applied when there is a need to increase - or decrease - the total number of pixels. This paper pretends to compare the “hqnx” and the “nxSaI” magnification algorithms with two interpolation algorithms – “nearest neighbor” and “bicubic interpolation” – in the image upsampling operations. Material and Methods: Three distinct Nuclear Medicine images were enlarged 2 and 4 times with the different digital image resizing algorithms (nearest neighbor, bicubic interpolation nxSaI and hqnx). To evaluate the pixel’s changes between the different output images, 3D whole image plot profiles and surface plots were used as an addition to the visual approach in the 4x upsampled images. Results: In the 2x enlarged images the visual differences were not so noteworthy. Although, it was clearly noticed that bicubic interpolation presented the best results. In the 4x enlarged images the differences were significant, with the bicubic interpolated images presenting the best results. Hqnx resized images presented better quality than 4xSaI and nearest neighbor interpolated images, however, its intense “halo effect” affects greatly the definition and boundaries of the image contents. Conclusion: The hqnx and the nxSaI algorithms were designed for images with clear edges and so its use in Nuclear Medicine images is obviously inadequate. Bicubic interpolation seems, from the algorithms studied, the most suitable and its each day wider applications seem to show it, being assumed as a multi-image type efficient algorithm.
Resumo:
Introduction: A major focus of data mining process - especially machine learning researches - is to automatically learn to recognize complex patterns and help to take the adequate decisions strictly based on the acquired data. Since imaging techniques like MPI – Myocardial Perfusion Imaging on Nuclear Cardiology, can implicate a huge part of the daily workflow and generate gigabytes of data, there could be advantages on Computerized Analysis of data over Human Analysis: shorter time, homogeneity and consistency, automatic recording of analysis results, relatively inexpensive, etc.Objectives: The aim of this study relates with the evaluation of the efficacy of this methodology on the evaluation of MPI Stress studies and the process of decision taking concerning the continuation – or not – of the evaluation of each patient. It has been pursued has an objective to automatically classify a patient test in one of three groups: “Positive”, “Negative” and “Indeterminate”. “Positive” would directly follow to the Rest test part of the exam, the “Negative” would be directly exempted from continuation and only the “Indeterminate” group would deserve the clinician analysis, so allowing economy of clinician’s effort, increasing workflow fluidity at the technologist’s level and probably sparing time to patients. Methods: WEKA v3.6.2 open source software was used to make a comparative analysis of three WEKA algorithms (“OneR”, “J48” and “Naïve Bayes”) - on a retrospective study using the comparison with correspondent clinical results as reference, signed by nuclear cardiologist experts - on “SPECT Heart Dataset”, available on University of California – Irvine, at the Machine Learning Repository. For evaluation purposes, criteria as “Precision”, “Incorrectly Classified Instances” and “Receiver Operating Characteristics (ROC) Areas” were considered. Results: The interpretation of the data suggests that the Naïve Bayes algorithm has the best performance among the three previously selected algorithms. Conclusions: It is believed - and apparently supported by the findings - that machine learning algorithms could significantly assist, at an intermediary level, on the analysis of scintigraphic data obtained on MPI, namely after Stress acquisition, so eventually increasing efficiency of the entire system and potentially easing both roles of Technologists and Nuclear Cardiologists. In the actual continuation of this study, it is planned to use more patient information and significantly increase the population under study, in order to allow improving system accuracy.