993 resultados para space optical communications
Resumo:
A travelling-wave model of a semiconductor optical amplifier based non-linear loop mirror is developed to investigate the importance of travelling-wave effects and gain/phase dynamics in predicting device behaviour. A constant effective carrier recovery lifetime approximation is found to be reasonably accurate (±10%) within a wide range of control pulse energies. Based on this approximation, a heuristic model is developed for maximum computational efficiency. The models are applied to a particular configuration involving feedback.
Resumo:
We experimentally demonstrate a Raman-Assisted Fibre Optical Parametric Amplifier (RA-FOPA) with 20dB net gain using wavelength division multiplexed signals. We report amplification of 10×58Gb/s 100GHz-spaced QPSK signals and show that by appropriate tuning of the parametric pump power and frequency, gain improvement of up to 5dB can be achieved for the RA-FOPA compared with combined individual contributions from the parametric and Raman pumps. We compare the RAFOPA with an equivalent-gain conventional FOPA and find that four-wave mixing crosstalk is substantially reduced by up to 5.8 ± 0.4dB using the RA-FOPA. Worst-case performance penalty of the RA-FOPA is found to be only 1.0 ± 0.2dB over all measured OSNRs, frequencies and input powers, making it an attractive proposal for future communications systems.
Resumo:
We experimentally demonstrate adiabatic soliton propagation in the fundamental mode of a few mode optical fibre and more complex behaviour in a higher order mode, indicating that the impact of nonlinearities differs for each mode.
Resumo:
Fiber to the premises has promised to increase the capacity in telecommunications access networks for well over 30 years. While it is widely recognized that optical-fiber-based access networks will be a necessity in the shortto medium-term future, its large upfront cost and regulatory issues are pushing many operators to further postpone its deployment, while installing intermediate unambitious solutions such as fiber to the cabinet. Such high investment cost of both network access and core capacity upgrade often derives from poor planning strategies that do not consider the necessity to adequately modify the network architecture to fully exploit the cost benefit that a fiber-centric solution can bring. DISCUS is a European Framework 7 Integrated Project that, building on optical-centric solutions such as long-reach passive optical access and flat optical core, aims to deliver a cost-effective architecture for ubiquitous broadband services. DISCUS analyzes, designs, and demonstrates end-to-end architectures and technologies capable of saving cost and energy by reducing the number of electronic terminations in the network and sharing the deployment costs among a larger number of users compared to current fiber access systems. This article describes the network architecture and the supporting technologies behind DISCUS, giving an overview of the concepts and methodologies that will be used to deliver our end-to-end network solution. © 2013 IEEE.
Resumo:
In this paper, we describe recent architectural and technological advances of the end to end optical network architecture proposed by the DISCUS project (the DIStributed Core for unlimited bandwidth supply for all Users and Services). The two main targets of DISCUS are the principle of equivalence in the access and the reduction of optical-to-electronic conversions in the metro-core network. Technological advances and techno-economic evaluation of Long-Reach Passive Optical Networks (LR-PON), as well as the optimal metro-core node architecture and the required network control plane framework are reported. Network infrastructure sharing challenges are also discussed. © 2014 IEEE.
Resumo:
Long-lived light bullets fully localized in both space and time can be generated in novel photonic media such as multicore optical fiber or waveguide arrays. In this paper we present detailed theoretical analysis on the existence and stability of the discrete-continuous light bullets using a very generic model that occurs in a number of applications.
Resumo:
Visible light communications is a technology with enormous potential for a wide range of applications within next generation transmission and broadcasting technologies. VLC offers simultaneous illumination and data communications by intensity modulating the optical power emitted by LEDs operating in the visible range of the electromagnetic spectrum (~370-780 nm). The major challenge in VLC systems to date has been in improving transmission speeds, considering the low bandwidths available with commercial LED devices. Thus, to improve the spectral usage, the research community has increasingly turned to advanced modulation formats such as orthogonal frequency-division multiplexing. In this article we introduce a new modulation scheme into the VLC domain; multiband carrier-less amplitude and phase modulation (m-CAP) and describe in detail its performance within the context of bandlimited systems.
Resumo:
We discuss the recently proposed architecture for an all-optical add-drop multiplexer of OFDM signals and we summarize the results of its theoretical design and experimental implementation. © 2015 OSA.
Resumo:
We examine data transmission during the interval immediately after wavelength switching of a tunable laser and, through simulation, we demonstrate how choice of modulation format can improve the efficacy of an optical burst/packet switched network. © 2013 Optical Society of America.
Resumo:
We present the compensation of the equalization enhanced phase noise (EEPN) in the long-haul n-level phase shift keying (n-PSK) coherent optical transmission system, by employing a scheme of phase modulated optical pilot carrier. © OSA 2013.
Resumo:
A multi-band CAP system is experimentally demonstrated for the first time in VLC.We show that with an 8-CAP testbed spectral efficiencies (~4.75 b/s/Hz) at a realistic distance of 1 m can be reached.
Resumo:
The phase noise enhancement due to digital dispersion equalization is investigated, which indicates that the phase noise from transmitter laser can also interact with the dispersion depending on the choice of digital dispersion compensation methods. © OSA 2012.
Reductions of peak-to-average power ratio and optical beat interference in cost-effective OFDMA-PONs
Resumo:
The peak-to-average power ratio (PAPR) and optical beat interference (OBI) effects are examined thoroughly in orthogonal frequency-division multiplexing access (OFDMA)-passive optical networks (PONs) at a signal bit rate up to ∼ 20 Gb/s per channel using cost-effective intensity-modulation and direct-detection (IM/DD). Single-channel OOFDM and upstream multichannel OFDM-PONs are investigated for up to six users. A number of techniques for mitigating the PAPR and OBI effects are presented and evaluated including adaptive-loading algorithms such as bit/power-loading, clipping for PAPR reduction, and thermal detuning (TD) for the OBI suppression. It is shown that the bit-loading algorithm is a very efficient PAPR reduction technique by reducing it at about 1.2 dB over 100 Km of transmission. It is also revealed that the optimum method for suppressing the OBI is the TD + bit-loading. For a targeted BER of 1 × 10-3, the minimum allowed channel spacing is 11 GHz when employing six users. © 2013 Springer Science+Business Media New York.
Resumo:
Continuous progress in optical communication technology and corresponding increasing data rates in core fiber communication systems are stimulated by the evergrowing capacity demand due to constantly emerging new bandwidth-hungry services like cloud computing, ultra-high-definition video streams, etc. This demand is pushing the required capacity of optical communication lines close to the theoretical limit of a standard single-mode fiber, which is imposed by Kerr nonlinearity [1–4]. In recent years, there have been extensive efforts in mitigating the detrimental impact of fiber nonlinearity on signal transmission, through various compensation techniques. However, there are still many challenges in applying these methods, because a majority of technologies utilized in the inherently nonlinear fiber communication systems had been originally developed for linear communication channels. Thereby, the application of ”linear techniques” in a fiber communication systems is inevitably limited by the nonlinear properties of the fiber medium. The quest for the optimal design of a nonlinear transmission channels, development of nonlinear communication technqiues and the usage of nonlinearity in a“constructive” way have occupied researchers for quite a long time.
Resumo:
Optical-phase conjugation nonlinearity compensation (OPC-NLC) in optical networks is evaluated using a built-in tool including self-channel and crosstalk channel interference effects. Though significant improvements are observed, a further refined launch power policy is required to fully take advantage of OPC-NLC capability.