984 resultados para solid-fluid separation
Resumo:
Two methods were compared for determining the concentration of penetrative biomass during growth of Rhizopus oligosporus on an artificial solid substrate consisting of an inert gel and starch as the sole source of carbon and energy. The first method was based on the use of a hand microtome to make sections of approximately 0.2- to 0.4-mm thickness parallel to the substrate surface and the determination of the glucosamine content in each slice. Use of glucosamine measurements to estimate biomass concentrations was shown to be problematic due to the large variations in glucosamine content with mycelial age. The second method was a novel method based on the use of confocal scanning laser microscopy to estimate the fractional volume occupied by the biomass. Although it is not simple to translate fractional volumes into dry weights of hyphae due to the lack of experimentally determined conversion factors, measurement of the fractional volumes in themselves is useful for characterizing fungal penetration into the substrate. Growth of penetrative biomass in the artificial model substrate showed two forms of growth with an indistinct mass in the region close to the substrate surface and a few hyphae penetrating perpendicularly to the surface in regions further away from the substrate surface. The biomass profiles against depth obtained from the confocal microscopy showed two linear regions on log-linear plots, which are possibly related to different oxygen availability at different depths within the substrate. Confocal microscopy has the potential to be a powerful tool in the investigation of fungal growth mechanisms in solid-state fermentation. (C) 2003 Wiley Periodicals, Inc.
Resumo:
Conventional methods to determine surface diffusion of adsorbed molecules are proven to be inadequate for strongly adsorbing vapors on activated carbon. Knudsen diffusion permeability (B-k) for strongly adsorbing vapors cannot be directly estimated from that of inert gases such as helium. In this paper three models are considered to elucidate the mechanism of surface diffusion in activated carbon. The transport mechanism in all three models is a combination of Knudsen diffusion, viscous flow and surface diffusion. The collision reflection factor f (which is the fraction of molecules undergoing collision to the solid surface over reflection from the surface) of the Knudsen diffusivity is assumed to be a function of loading. It was found to be 1.79 in the limit of zero loading, and decreases as loading increases. The surface diffusion permeability increases sharply at very low pressures and then starts to decrease after it has reached a maximum (B(mum)s) at a threshold pressure. The initial rapid increase in the total permeability is mainly attributed to surface diffusion. Interestingly the B(mum)s for all adsorbates appear at the same volumetric adsorbed phase concentration, suggesting that the volume of adsorbed molecules may play an important role in the surface diffusion mechanism in activated carbon. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a new model based on thermodynamic and molecular interaction between molecules to describe the vapour-liquid phase equilibria and surface tension of pure component. The model assumes that the bulk fluid can be characterised as set of parallel layers. Because of this molecular structure, we coin the model as the molecular layer structure theory (MLST). Each layer has two energetic components. One is the interaction energy of one molecule of that layer with all surrounding layers. The other component is the intra-layer Helmholtz free energy, which accounts for the internal energy and the entropy of that layer. The equilibrium between two separating phases is derived from the minimum of the grand potential, and the surface tension is calculated as the excess of the Helmholtz energy of the system. We test this model with a number of components, argon, krypton, ethane, n-butane, iso-butane, ethylene and sulphur hexafluoride, and the results are very satisfactory. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
An integrated mathematical model for the kinetics of multicomponent adsorption on microporous carbon was developed. Transport in this bidisperse solid is represented by balance equations in the macropore and micropore phases, in which gas-phase diffusion dominates the mass transfer in the macropores, with the phenomenological diffusivities represented by the generalized Maxwell-Stefan (GMS) formulation. Viscous flow also contributes to the macropore fluxes and is included in the MS expressions. Diffusion of the adsorbed phase controls the mass transfer in the micro ore phase, p which is also described in a similar way by the MS method. The adsorption isotherms are represented by a new heterogeneous modified vacancy solution theory formulation of adsorption, which has proved to be a robust method for adsorption on activated carbons. The model is applied to the coadsorption and codesorption of C2H6 and C3H8 on Ajax and Norit carbon, as well as the displacement on Ajax carbon. The effect of the viscous flow in the macropore phase is not significant for the cases studied. The model accurately predicts the overshoot behavior and rollup of C2H6 during coadsorption. The prediction for the heavier compound C3H8 is always satisfactory, though at higher C3H8 mole fraction, the overshoot extent of C2H6 is overpredicted, possibly due to neglect of heat effects.
Resumo:
The variation of the pore structure of several coal chars during gasification in air and carbon dioxide was studied by argon adsorption at 87 K and CO2 adsorption at 273 K. It is found that the surface area and volume of the small pores (10 Å for air gasification is constant over a wide range of conversion (>20%), while for CO2 gasification similar results are obtained using the total surface area. However, in the early stages of gasification (
Resumo:
The volatiles from Coriandrum sativum L., Satureja montana L., Santolina chamaecyparissus L., and Thymus vulgaris L. were isolated by hydrodistillation (essential oil) and supercritical fluid extraction (volatile oil). Their effect on seed germination and root and shoot growth of the surviving seedlings of four crops (Zea mays L., Triticum durum L., Pisum sativum L., and Lactuca sativa L.) and two weeds (Portulaca oleracea L. and Vicia sativa L.) was investigated and compared with those of two synthetic herbicides, Agrocide and Prowl. The volatile oils of thyme and cotton lavender seemed to be promising alternatives to the synthetic herbicides because they were the least injurious to the crop species. The essential oil of winter savory, on the other hand, affected both crop and weeds and can be appropriate for uncultivated fields.
Resumo:
A new circuit topology is proposed to replace the actual pulse transformer and thyratron based resonant modulator that supplies the 60 kV target potential for the ion acceleration of the On-Line Isotope Mass Separator accelerator, the stability of which is critical for the mass resolution downstream separator, at the European Organization for Nuclear Research. The improved modulator uses two solid-state switches working together, each one based on the Marx generator concept, operating as series and parallel switches, reducing the stress on the series stacked semiconductors, and also as auxiliary pulse generator in order to fulfill the target requirements. Preliminary results of a 10 kV prototype, using 1200 V insulated gate bipolar transistors and capacitors in the solid-state Marx circuits, ten stages each, with an electrical equivalent circuit of the target, are presented, demonstrating both the improved voltage stability and pulse flexibility potential wanted for this new modulator.
Resumo:
This paper describes preliminary work done towards the development of new metallic heterogeneous catalysts to be used in the transesterification reaction of triglycerides, which is of considerable interest in the production of biodiesel. Biodiesel, is a mixture of mono-alkyl esters of fatty acids, and is currently manufactured by transesterification of triglycerides with methanol using NaOH or KOH as liquid base catalyst. Catalysts as such are corrosive to the equipment, and as these catalysts are in liquid phase must be neutralized after the completion of the reaction, typically using HCl, thus producing salt streams. Moreover, due to the presence of free fatty acids it reacts to form soaps as unwanted by-products, hence requiring more expensive separation processes. Therefore, there is a great need on the development of industrial processes for biodiesel production using solid acid catalysts. The key benefit of using solid acid catalysts is that no polluting by-products are formed and the catalysts do not have to be removed since they do not mix with the biodiesel product.
Resumo:
A newly developed solid-state repetitive high-voltage (HV) pulse modulator topology created from the mature concept of the d.c. voltage multiplier (VM) is described. The proposed circuit is based in a voltage multiplier type circuit, where a number of d.c. capacitors share a common connection with different voltage rating in each one. Hence, besides the standard VM rectifier and coupling diodes, two solid-state on/off switches are used, in each stage, to switch from the typical charging VM mode to a pulse mode with the d.c. capacitors connected in series with the load. Due to the on/off semiconductor configuration, in half-bridge structures, the maximum voltage blocked by each one is the d.c. capacitor voltage in each stage. A 2 kV prototype is described and the results are compared with PSPICE simulations.
Resumo:
This paper describes experimental work done towards the search for more profitable and sustainable alternatives regarding biodiesel production, using heterogeneous catalysts instead of the conventional homogenous alkaline catalysts, such as NaOH, KOH or sodium methoxide, for the methanolysis reaction. This experimental work is a first stage on the development and optimization of new solid catalysts, able to produce biodiesel from vegetable oils. The heterogeneous catalytic process has many differences from the currently used in industry homogeneous process. The main advantage is that, it requires lower investment costs, since no need for separation steps of methanol/catalyst, biodiesel/catalyst and glycerine/catalyst. This work resulted in the selection of CaO and CaO modified with Li catalysts, which showed very good catalytic performances with high activity and stability. In fact FAME yields higher than 92% were observed in two consecutive reaction batches without expensive intermediate reactivation procedures. Therefore, those catalysts appear to be suitable for biodiesel production.
Resumo:
Large area n-i-p-n-i-p a-SiC:H heterostructures are used as sensing element in a double colour laser scanned photodiode image sensor (D/CLSP). This work aims to clarify possible improvements, physical limits and performance of CLSP image sensor when used as non-pixel image reader. Here, the image capture device and the scanning reader are optimized and the effects of the sensor structure on the output characteristics discussed. The role of the design of the sensing element, the doped layer composition and thickness, the read-out parameters (applied voltage and scanner frequency) on the image acquisition and the colour detection process are analysed. A physical model is presented and supported by a numerical simulation of the output characteristics of the sensor.
Resumo:
Large area n-i-p-n-i-p a-SiC:H heterostructures are used as sensing element in a Double Color Laser Scanned Photodiode image sensor (D/CLSP). This work aims to clarify possible improvements, physical limits and performance of CLSP image sensor when used as non-pixel image reader. Here, the image capture device and the scanning reader are optimized and the effects of the sensor structure on the output characteristics discussed. The role of the design of the sensing element, the doped layer composition and thickness, the read-out parameters (applied voltage and scanner frequency) on the image acquisition and the color detection process are analyzed. A physical model is presented and supported by a numerical simulation of the output characteristics of the sensor.
Resumo:
We investigate nematic wetting and filling transitions of crenellated surfaces (rectangular gratings) by numerical minimization of the Landau-de Gennes free energy as a function of the anchoring strength, for a wide range of the surface geometrical parameters: depth, width, and separation of the crenels. We have found a rich phase behavior that depends in detail on the combination of the surface parameters. By comparison to simple fluids, which undergo a continuous filling or unbending transition, where the surface changes from a dry to a filled state, followed by a wetting or unbinding transition, where the thickness of the adsorbed fluid becomes macroscopic and the interface unbinds from the surface, nematics at crenellated surfaces reveal an intriguingly rich behavior: in shallow crenels only wetting is observed, while in deep crenels, only filling transitions occur; for intermediate surface geometrical parameters, a new class of filled states is found, characterized by bent isotropic-nematic interfaces, which persist for surfaces structured on large scales, compared to the nematic correlation length. The global phase diagram displays two wet and four filled states, all separated by first-order transitions. For crenels in the intermediate regime re-entrant filling transitions driven by the anchoring strength are observed.
Resumo:
This paper addresses the voltage droop compensation associated with long pulses generated by solid-stated based high-voltage Marx topologies. In particular a novel design scheme for voltage droop compensation in solid-state based bipolar Marx generators, using low-cost circuitry design and control, is described. The compensation consists of adding one auxiliary PWM stage to the existing Marx stages, without changing the modularity and topology of the circuit, which controls the output voltage and a LC filter that smoothes the voltage droop in both the positive and negative output pulses. Simulation results are presented for 5 stages Marx circuit using 1 kV per stage, with 1 kHz repetition rate and 10% duty cycle.
Resumo:
The purpose of this paper is to present and discuss a general HV topology of the solid-state Marx modulator, for unipolar or bipolar generation connected with a step-up transformer to increase the output voltage applied to a resistive load. Due to the use of an output transformer, discussion about the reset of the transformer is made to guarantee zero average voltage applied to the primary. It is also discussed the transformer magnetizing energy recovering back to the energy storage capacitors. Simulation results for a circuit that generates 100 kV pulses using 1000 V semiconductors are presented and discussed regarding the voltage and current stress on the semiconductors and result obtained.