998 resultados para soil firming mechanism
Resumo:
We characterize the Walrasian allocations correspondence by means offour axioms: consistency, replica invariance, individual rationality andPareto optimality. It is shown that for any given class of exchange economiesany solution that satisfies the axioms is a selection from the Walrasianallocations with slack. Preferences are assumed to be smooth, but may besatiated and non--convex. A class of economies is defined as all economieswhose agents' preferences belong to an arbitrary family (finite or infinite)of types. The result can be modified to characterize equal budget Walrasianallocations with slack by replacing individual rationality with individualrationality from equal division. The results are valid also for classes ofeconomies in which core--Walras equivalence does not hold.
Resumo:
The oxalate-carbonate pathway (OCP) leads to a potential carbon sink in terrestrial environments. This process is linked to the activity of oxalotrophic bacteria. Although isolation and molecular characterizations are used to study oxalotrophic bacteria, these approaches do not give information on the active oxalotrophs present in soil undergoing the OCP. The aim of this study was to assess the diversity of active oxalotrophic bacteria in soil microcosms using the Bromodeoxyuridine (BrdU) DNA labeling technique. Soil was collected near an oxalogenic tree (Milicia excelsa). Different concentrations of calcium oxalate (0.5%, 1%, and 4% w/w) were added to the soil microcosms and compared with an untreated control. After 12days of incubation, a maximal pH of 7.7 was measured for microcosms with oxalate (initial pH 6.4). At this time point, a DGGE profile of the frc gene was performed from BrdU-labeled soil DNA and unlabeled soil DNA. Actinobacteria (Streptomyces- and Kribbella-like sequences), Gammaproteobacteria and Betaproteobacteria were found as the main active oxalotrophic bacterial groups. This study highlights the relevance of Actinobacteria as members of the active bacterial community and the identification of novel uncultured oxalotrophic groups (i.e. Kribbella) active in soils.
Resumo:
This paper analyzes the transmission mechanisms of monetarypolicy in a general equilibrium model of securities marketsand banking with asymmetric information. Banks' optimal asset/liability policy is such that in equilibrium capital adequacy constraints are always binding. Asymmetric information about banks' net worth adds a cost to outside equity capital, which limits the extent to which banks can relax their capital constraint. In this context monetarypolicy does not affect bank lending through changes in bank liquidity. Rather, it has the effect of changing theaggregate composition of financing by firms. The model also produces multiple equilibria, one of which displays all the features of a "credit crunch". Thus, monetary policy can also have large effects when it induces a shift from one equilibrium to the other.
Resumo:
Human activities have resulted in the release and introduction into the environment of a plethora of aromatic chemicals. The interest in discovering how bacteria are dealing with hazardous environmental pollutants has driven a large research community and has resulted in important biochemical, genetic, and physiological knowledge about the degradation capacities of microorganisms and their application in bioremediation, green chemistry, or production of pharmacy synthons. In addition, regulation of catabolic pathway expression has attracted the interest of numerous different groups, and several catabolic pathway regulators have been exemplary for understanding transcription control mechanisms. More recently, information about regulatory systems has been used to construct whole-cell living bioreporters that are used to measure the quality of the aqueous, soil, and air environment. The topic of biodegradation is relatively coherent, and this review presents a coherent overview of the regulatory systems involved in the transcriptional control of catabolic pathways. This review summarizes the different regulatory systems involved in biodegradation pathways of aromatic compounds linking them to other known protein families. Specific attention has been paid to describing the genetic organization of the regulatory genes, promoters, and target operon(s) and to discussing present knowledge about signaling molecules, DNA binding properties, and operator characteristics, and evidence from regulatory mutants. For each regulator family, this information is combined with recently obtained protein structural information to arrive at a possible mechanism of transcription activation. This demonstrates the diversity of control mechanisms existing in catabolic pathways.
Resumo:
A newsletter produced by Iowa Department of Agriculture and Land Stewardship. The DSC is responsible for state leadership in the protection and management of soil, water and mineral resources, assisting soil and water conservation districts and private landowners to meet their agricultural and environmental protection needs.
Resumo:
Differentiation of female sexual organs in flowering plants is rare and contrasts with the wide range of male reproductive strategies. An unusual example involves diplostigmaty, the possession of spatially and temporally distinct stigmas in Sebaea (Gentianaceae). Here, the single pistil within a flower has an apical stigma, as occurs in most flowering plants, but also a secondary stigma that occurs midway down the style, which is physically discrete and receptive several days after the apical stigma. We examined the function of diplostigmaty in Sebaea aurea, an insect-pollinated species of the Western Cape of South Africa. Floral manipulations and measurements of fertility and mating patterns provided evidence that basal stigmas function to enable autonomous delayed self-pollination, without limiting opportunities for outcrossing and thus avoiding the costs of seed discounting. We suggest that delayed selfing serves as a mechanism of reproductive assurance in populations with low plant density. The possession of dimorphic stigma function provides a novel example of a flexible mixed-mating strategy in plants that is responsive to changing demographic conditions.
Resumo:
Severe land degradation has strongly affected both people’s livelihood and the environment in Cape Verde (Cabo Verde in Portuguese), a natural resource poor country. Despite the enormous investment in soil and water conservation measures (SWC or SLM), which are visible throughout the landscape, and the recognition of their benefits, their biophysical and socioeconomic impacts have been poorly assessed and scientifically documented. This paper contributes to filling this gap, by bringing together insights from literature and policy review, field survey and participatory assessment in the Ribeira Seca Watershed through a concerted approach devised by the DESIRE project (the “Desire approach”). Specifically, we analyze government strategies towards building resilience against the harsh conditions, analyze the state of land degradation and its drivers, survey and map the existing SWC measures, and assess their effectiveness against land degradation, on crop yield and people’s livelihood. We infer that the relative success of Cape Verde in tackling desertification and rural poverty owes to an integrated governance strategy that comprises raising awareness, institutional framework development, financial resource allocation, capacity building, and active participation of rural communities. We recommend that specific, scientific-based monitoring and assessment studies be carried out on the biophysical and socioeconomic impact of SLM and that the “Desire approach” be scaled-up to other watersheds in the country.
Resumo:
IDALS stands for Iowa Department of Agriculture and Land Stewardship. IDALS’s mission is to provide leadership for all aspects of agriculture in Iowa, ensure consumer protection and promote the responsible use of our natural resources. DSC stands for the Division of Soil Conservation and is the division within IDALS responsible for state leadership in the protection and management of soil, water and mineral resources. Learn more about IDALS at www.iowaagriculture.gov
Resumo:
Although the criteria for defining erosion tolerance are well established, the limits generally used are not consistent with natural, economical and technological conditions. Rates greater than soil formation can be accepted only until a minimum of soil depth is reached, provided that they are not associated with environmental hazard or productivity losses. A sequence of equations is presented to calculate erosion tolerance rates through time. The selection of equation parameters permits the definition of erosion tolerance rates in agreement with environmental, social and technical needs. The soil depth change that is related to irreversible soil degradation can be calculated. The definition of soil erosion tolerance according to these equations can be used as a guideline for sustainable land use planning and is compatible with expert systems.
Resumo:
A quantitative model of water movement within the immediate vicinity of an individual root is developed and results of an experiment to validate the model are presented. The model is based on the assumption that the amount of water transpired by a plant in a certain period is replaced by an equal volume entering its root system during the same time. The model is based on the Darcy-Buckingham equation to calculate the soil water matric potential at any distance from a plant root as a function of parameters related to crop, soil and atmospheric conditions. The model output is compared against measurements of soil water depletion by rice roots monitored using γ-beam attenuation in a greenhouse of the Escola Superior de Agricultura "Luiz de Queiroz"/Universidade de São Paulo(ESALQ/USP) in Piracicaba, State of São Paulo, Brazil, in 1993. The experimental results are in agreement with the output from the model. Model simulations show that a single plant root is able to withdraw water from more than 0.1 m away within a few days. We therefore can assume that root distribution is a less important factor for soil water extraction efficiency.
Resumo:
What is in this review produced by The Iowa Department of Agricultural and Land Stewardship: Special Points of Interest: • CREP wetlands remove 40-90% of the nitrate and 90+% of the herbicide in tile drainage water from upper- lying croplands. • The watershed approach is comprehensive, efficient and effective resource management. • The Mines & Minerals Bureau, through the AML Program, worked with various watershed groups to secure an additional $1 million dollars in funding for the construction on AML projects in Marion and Mahaska counties. • Iowa Learning Farm is Building a Culture of Conservation: Farmer to Farmer—Iowan to Iowan.
Resumo:
Although chemokines and their receptors were initially identified as regulators of cell trafficking during inflammation and immune response, they have emerged as crucial players in all stages of tumor development, primary growth, migration, angiogenesis, and establishment as metastases in distant target organs. Neuroectodermal tumors regroup neoplasms originating from the embryonic neural crest cells, which display clinical and biological similarities. These tumors are highly malignant and rapidly progressing diseases that disseminate to similar target organs such as bone marrow, bone, liver and lungs. There is increasing evidence that interaction of several chemokine receptors with corresponding chemokine ligands are implicated in the growth and invasive characteristics of these tumors. In this review we summarize the current knowledge on the role of CXCL12 chemokine and its CXCR4 and CXCR7 receptors in the progression and survival of neuroectodermal tumors, with particular emphasis on neuroblastoma, the most typical and enigmatic neuroectodermal childhood tumor.
Resumo:
Tiivistelmä: TDR-mittausten kalibrointi viljeltyjen turvemaiden kosteuden mittaamiseen
Resumo:
Many root-colonizing pseudomonads are able to promote plant growth by increasing phosphate availability in soil through solubilization of poorly soluble rock phosphates. The major mechanism of phosphate solubilization by pseudomonads is the secretion of gluconic acid, which requires the enzyme glucose dehydrogenase and its cofactor pyrroloquinoline quinone (PQQ). The main aim of this study was to evaluate whether a PQQ biosynthetic gene is suitable to study the phylogeny of phosphate-solubilizing pseudomonads. To this end, two new primers, which specifically amplify the pqqC gene of the Pseudomonas genus, were designed. pqqC fragments were amplified and sequenced from a Pseudomonas strain collection and from a natural wheat rhizosphere population using cultivation-dependent and cultivation-independent approaches. Phylogenetic trees based on pqqC sequences were compared to trees obtained with the two concatenated housekeeping genes rpoD and gyrB. For both pqqC and rpoD-gyrB, similar main phylogenetic clusters were found. However, in the pqqC but not in the rpoD-gyrB tree, the group of fluorescent pseudomonads producing the antifungal compounds 2,4-diacetylphloroglucinol and pyoluteorin was located outside the Pseudomonas fluorescens group. pqqC sequences from isolated pseudomonads were differently distributed among the identified phylogenetic groups than pqqC sequences derived from the cultivation-independent approach. Comparing pqqC phylogeny and phosphate solubilization activity, we identified one phylogenetic group with high solubilization activity. In summary, we demonstrate that the gene pqqC is a novel molecular marker that can be used complementary to housekeeping genes for studying the diversity and evolution of plant-beneficial pseudomonads.