954 resultados para software-defined network


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fifty Bursa of Fabricius (BF) were examined by conventional optical microscopy and digital images were acquired and processed using Matlab® 6.5 software. The Artificial Neuronal Network (ANN) was generated using Neuroshell® Classifier software and the optical and digital data were compared. The ANN was able to make a comparable classification of digital and optical scores. The use of ANN was able to classify correctly the majority of the follicles, reaching sensibility and specificity of 89% and 96%, respectively. When the follicles were scored and grouped in a binary fashion the sensibility increased to 90% and obtained the maximum value for the specificity of 92%. These results demonstrate that the use of digital image analysis and ANN is a useful tool for the pathological classification of the BF lymphoid depletion. In addition it provides objective results that allow measuring the dimension of the error in the diagnosis and classification therefore making comparison between databases feasible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the emergence of extreme opinions and in what kind of environment they might become less extreme is a central theme in our modern globalized society. A model combining continuous opinions and observed discrete actions (CODA) capable of addressing the important issue of measuring how extreme opinions might be has been recently proposed. In this paper I show extreme opinions to arise in a ubiquitous manner in the CODA model for a multitude of social network structures. Depending on network details reducing extremism seems to be possible. However, a large number of agents with extreme opinions is always observed. A significant decrease in the number of extremists can be observed by allowing agents to change their positions in the network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Expectation is a very potent pain modulator in both humans and animals. There is evidence that pain transmission neurons are modulated by expectation preceding painful stimuli. Nonetheless, few studies have examined the influence of pain expectation on the pain-related neuronal activity and the functional connectivity within the central nociceptive network. Results: This study used a tone-laser conditioning paradigm to establish the pain expectation in rats, and simultaneously recorded the anterior cingulate cortex (ACC), the medial dorsal thalamus (MD), and the primary somatosensory cortex (SI) to investigate the effect of pain expectation on laser-induced neuronal responses. Cross-correlation and partial directed coherence analysis were used to determine the functional interactions within and between the recorded areas during nociceptive transmission. The results showed that under anticipation condition, the neuronal activity to the auditory cue was significantly increased in the ACC area, whereas those to actual noxious stimuli were enhanced in all the recorded areas. Furthermore, neuronal correlations within and between these areas were significantly increased under conditions of expectation compared to those under non-expectation conditions, indicating an enhanced synchronization of neural activity within the pain network. In addition, information flow from the medial (ACC and MD) to the lateral (SI cortex) pain pathway increased, suggesting that the emotion-related neural circuits may modulate the neuronal activity in the somatosensory pathway during nociceptive transmission. Conclusion: These results demonstrate that the nociceptive processing in both medial and lateral pain systems is modulated by the expectation of pain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oscillator networks have been developed in order to perform specific tasks related to image processing. Here we analytically investigate the existence of synchronism in a pair of phase oscillators that are short-range dynamically coupled. Then, we use these analytical results to design a network able of detecting border of black-and-white figures. Each unit composing this network is a pair of such phase oscillators and is assigned to a pixel in the image. The couplings among the units forming the network are also dynamical. Border detection emerges from the network activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Protein-protein interactions (PPIs) constitute one of the most crucial conditions to sustain life in living organisms. To study PPI in Arabidopsis thaliana we have developed AtPIN, a database and web interface for searching and building interaction networks based on publicly available protein-protein interaction datasets. Description: All interactions were divided into experimentally demonstrated or predicted. The PPIs in the AtPIN database present a cellular compartment classification (C(3)) which divides the PPI into 4 classes according to its interaction evidence and subcellular localization. It has been shown in the literature that a pair of genuine interacting proteins are generally expected to have a common cellular role and proteins that have common interaction partners have a high chance of sharing a common function. In AtPIN, due to its integrative profile, the reliability index for a reported PPI can be postulated in terms of the proportion of interaction partners that two proteins have in common. For this, we implement the Functional Similarity Weight (FSW) calculation for all first level interactions present in AtPIN database. In order to identify target proteins of cytosolic glutamyl-tRNA synthetase (Cyt-gluRS) (AT5G26710) we combined two approaches, AtPIN search and yeast two-hybrid screening. Interestingly, the proteins glutamine synthetase (AT5G35630), a disease resistance protein (AT3G50950) and a zinc finger protein (AT5G24930), which has been predicted as target proteins for Cyt-gluRS by AtPIN, were also detected in the experimental screening. Conclusions: AtPIN is a friendly and easy-to-use tool that aggregates information on Arabidopsis thaliana PPIs, ontology, and sub-cellular localization, and might be a useful and reliable strategy to map protein-protein interactions in Arabidopsis. AtPIN can be accessed at http://bioinfo.esalq.usp.br/atpin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: With nearly 1,100 species, the fish family Characidae represents more than half of the species of Characiformes, and is a key component of Neotropical freshwater ecosystems. The composition, phylogeny, and classification of Characidae is currently uncertain, despite significant efforts based on analysis of morphological and molecular data. No consensus about the monophyly of this group or its position within the order Characiformes has been reached, challenged by the fact that many key studies to date have non-overlapping taxonomic representation and focus only on subsets of this diversity. Results: In the present study we propose a new definition of the family Characidae and a hypothesis of relationships for the Characiformes based on phylogenetic analysis of DNA sequences of two mitochondrial and three nuclear genes (4,680 base pairs). The sequences were obtained from 211 samples representing 166 genera distributed among all 18 recognized families in the order Characiformes, all 14 recognized subfamilies in the Characidae, plus 56 of the genera so far considered incertae sedis in the Characidae. The phylogeny obtained is robust, with most lineages significantly supported by posterior probabilities in Bayesian analysis, and high bootstrap values from maximum likelihood and parsimony analyses. Conclusion: A monophyletic assemblage strongly supported in all our phylogenetic analysis is herein defined as the Characidae and includes the characiform species lacking a supraorbital bone and with a derived position of the emergence of the hyoid artery from the anterior ceratohyal. To recognize this and several other monophyletic groups within characiforms we propose changes in the limits of several families to facilitate future studies in the Characiformes and particularly the Characidae. This work presents a new phylogenetic framework for a speciose and morphologically diverse group of freshwater fishes of significant ecological and evolutionary importance across the Neotropics and portions of Africa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Hepatitis B virus (HBV) can be classified into nine genotypes (A-I) defined by sequence divergence of more than 8% based on the complete genome. This study aims to identify the genotypic distribution of HBV in 40 HBsAg-positive patients from Rondonia, Brazil. A fragment of 1306 bp partially comprising surface and polymerase overlapping genes was amplified by PCR. Amplified DNA was purified and sequenced. Amplified DNA was purified and sequenced on an ABI PRISM (R) 377 Automatic Sequencer (Applied Biosystems, Foster City, CA, USA). The obtained sequences were aligned with reference sequences obtained from the GenBank using Clustal X software and then edited with Se-Al software. Phylogenetic analyses were conducted by the Markov Chain Monte Carlo (MCMC) approach using BEAST v.1.5.3. Results: The subgenotypes distribution was A1 (37.1%), D3 (22.8%), F2a (20.0%), D4 (17.1%) and D2 (2.8%). Conclusions: These results for the first HBV genotypic characterization in Rondonia state are consistent with other studies in Brazil, showing the presence of several HBV genotypes that reflects the mixed origin of the population, involving descendants from Native Americans, Europeans, and Africans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Adequate nutrition plays an important role in bone mass accrual and maintenance and has been demonstrated as a significant tool for the prevention of fractures in individuals with osteoporosis. Objective: The aim of the present study was to evaluate bone health-related nutrients intake and its association with osteoporotic fractures in a representative sample of 2344 individuals aged 40 years or older in Brazil. Methods: In a transversal population-based study, a total of 2420 individuals over 40 years old were evaluated from March to April 2006. Participants were men and women from all socioeconomic classes and education levels living around the Brazilian territory Individuals responded a questionnaire including self reported fractures as well a 24-hour food recall. Nutrient intakes were evaluated by Nutrition Data System for Research software (NDSR, University of Minnesota, 2007). Low trauma fracture was defined as that resulting of a fall from standing height or less. Nutrient intakes adequacies were performed by using the DRI's proposed values. Statistical analysis comprises Oneway ANCOVA adjusted by age and use of nutritional supplements and multiple logistic regression. SAS software was used for statistical analysis. Results: Fractures was reported by 13% of men and 15% of women. Women with fractures presented significantly higher calcium, phosphorus and magnesium intakes. However, in all regions and socio-economical levels mean intakes of bone related nutrients were below the recommended levels. It was demonstrated that for every 100 mg/phosphorus increase the risk of fractures by 9% (OR 1.09; IC95% 1.05-1.13, p < 0.001). Conclusion: The results demonstrated inadequacies in bone related nutrients in our population as well that an increase in phosphorus intake is related to bone fractures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In many real situations, randomness is considered to be uncertainty or even confusion which impedes human beings from making a correct decision. Here we study the combined role of randomness and determinism in particle dynamics for complex network community detection. In the proposed model, particles walk in the network and compete with each other in such a way that each of them tries to possess as many nodes as possible. Moreover, we introduce a rule to adjust the level of randomness of particle walking in the network, and we have found that a portion of randomness can largely improve the community detection rate. Computer simulations show that the model has good community detection performance and at the same time presents low computational complexity. (C) 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article focuses on the identification of the number of paths with different lengths between pairs of nodes in complex networks and how these paths can be used for characterization of topological properties of theoretical and real-world complex networks. This analysis revealed that the number of paths can provide a better discrimination of network models than traditional network measurements. In addition, the analysis of real-world networks suggests that the long-range connectivity tends to be limited in these networks and may be strongly related to network growth and organization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents SMarty, a variability management approach for UML-based software product lines (PL). SMarty is supported by a UML profile, the SMartyProfile, and a process for managing variabilities, the SMartyProcess. SMartyProfile aims at representing variabilities, variation points, and variants in UML models by applying a set of stereotypes. SMartyProcess consists of a set of activities that is systematically executed to trace, identify, and control variabilities in a PL based on SMarty. It also identifies variability implementation mechanisms and analyzes specific product configurations. In addition, a more comprehensive application of SMarty is presented using SEI's Arcade Game Maker PL. An evaluation of SMarty and related work are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work clarifies the relation between network circuit (topology) and behaviour (information transmission and synchronization) in active networks, e.g. neural networks. As an application, we show how one can find network topologies that are able to transmit a large amount of information, possess a large number of communication channels, and are robust under large variations of the network coupling configuration. This theoretical approach is general and does not depend on the particular dynamic of the elements forming the network, since the network topology can be determined by finding a Laplacian matrix (the matrix that describes the connections and the coupling strengths among the elements) whose eigenvalues satisfy some special conditions. To illustrate our ideas and theoretical approaches, we use neural networks of electrically connected chaotic Hindmarsh-Rose neurons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We numerically study the dynamics of a discrete spring-block model introduced by Olami, Feder, and Christensen (OFC) to mimic earthquakes and investigate to what extent this simple model is able to reproduce the observed spatiotemporal clustering of seismicity. Following a recently proposed method to characterize such clustering by networks of recurrent events [J. Davidsen, P. Grassberger, and M. Paczuski, Geophys. Res. Lett. 33, L11304 (2006)], we find that for synthetic catalogs generated by the OFC model these networks have many nontrivial statistical properties. This includes characteristic degree distributions, very similar to what has been observed for real seismicity. There are, however, also significant differences between the OFC model and earthquake catalogs, indicating that this simple model is insufficient to account for certain aspects of the spatiotemporal clustering of seismicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complex networks have been characterised by their specific connectivity patterns (network motifs), but their building blocks can also be identified and described by node-motifs-a combination of local network features. One technique to identify single node-motifs has been presented by Costa et al. (L. D. F. Costa, F. A. Rodrigues, C. C. Hilgetag, and M. Kaiser, Europhys. Lett., 87, 1, 2009). Here, we first suggest improvements to the method including how its parameters can be determined automatically. Such automatic routines make high-throughput studies of many networks feasible. Second, the new routines are validated in different network-series. Third, we provide an example of how the method can be used to analyse network time-series. In conclusion, we provide a robust method for systematically discovering and classifying characteristic nodes of a network. In contrast to classical motif analysis, our approach can identify individual components (here: nodes) that are specific to a network. Such special nodes, as hubs before, might be found to play critical roles in real-world networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biological neuronal networks constitute a special class of dynamical systems, as they are formed by individual geometrical components, namely the neurons. In the existing literature, relatively little attention has been given to the influence of neuron shape on the overall connectivity and dynamics of the emerging networks. The current work addresses this issue by considering simplified neuronal shapes consisting of circular regions (soma/axons) with spokes (dendrites). Networks are grown by placing these patterns randomly in the two-dimensional (2D) plane and establishing connections whenever a piece of dendrite falls inside an axon. Several topological and dynamical properties of the resulting graph are measured, including the degree distribution, clustering coefficients, symmetry of connections, size of the largest connected component, as well as three hierarchical measurements of the local topology. By varying the number of processes of the individual basic patterns, we can quantify relationships between the individual neuronal shape and the topological and dynamical features of the networks. Integrate-and-fire dynamics on these networks is also investigated with respect to transient activation from a source node, indicating that long-range connections play an important role in the propagation of avalanches.