966 resultados para smooth muscle alpha-actin
Resumo:
Myoepithelioma is a dimorphic neoplasm with contractile-epithelial phenotype, originally interpreted as deriving from, but not actually restricted to the salivary glands. As a novel addition to the list of exquisitely rare intracranial salivary gland-type tumors and tumor-like lesions, we report on an example of myoepithelioma encountered in the left cerebellopontine angle of a 32-year-old male. Clinically presenting with ataxia and dizziness, this extraaxial mass of 4 × 3.5 × 3 cm was surgically resected, and the patient is alive 6 years postoperatively. Histologically, the tumor exhibited a continuum ranging from compact fascicles of spindle cells to epithelial nests and trabeculae partitioned by hyalinized septa, while lacking tubular differentiation. Regardless of architectural variations, there was robust immunoexpression of S100 protein, smooth muscle actin, GFAP, cytokeratin, and vimentin. Cytologic atypia tended to be modest throughout, and the MIB1 labeling index averaged less than 1%. Fluorescent in situ hybridization indicated no rearrangement of the EWSR1 locus. We interpret these results to suggest that myoepithelioma of the posterior fossa - along with related salivary epithelial tumors in this ostensibly incongruous locale - may possibly represent analogous neoplasms to their orthotopic counterparts, ones arising within aberrant salivary anlagen. The presence of the latter lends itself to being mechanistically accounted for by either postulating placodal remnants in the wake of branchial arch development, or linking them to exocrine glandular nests within endodermal cysts. Alternatively, myoepithelioma at this site could be regarded as a non tissue-specific lesion similar to its relatives ubiquitously occurring in the soft parts.
Resumo:
A 9-year-old Boxer dog was referred to the Veterinary Teaching Hospital of the University of Bern for a history of chronic neck pain and gait problems, which rapidly progressed to a non-ambulatory status. Magnetic resonance imaging (MRI) examination of the head revealed a large intra-axial space-occupying lesion that was divided in two portions interconnected by a thin isthmus at the level of the cerebellar tentorium. Histopathology revealed a biphasic malignant neoplasm composed of neuroepithelial and mesenchymal elements. The former displayed characteristics of conventional anaplastic oligodendroglioma involving brisk mitotic activity and glomeruloid microvascular proliferation on a background of a fibrillary round cells with "honeycomb-like" perinuclear vacuolation. Conversely, the sarcomatous moiety exhibited haphazard fascicles of spindle cells amidst an intricate mesh of pericellular basal lamina and broad bands of collagen. Both tumor cell populations immunoreacted for Olig-2 and – to a lesser extent – GFAP. In addition, the sarcomatous areas focally expressed vimentin, muscular actin, and smooth muscle actin. "Oligosarcoma" - an exquisitely uncommon pattern of oligodendroglial malignancy in humans - has not previously been reported to affect dogs, although oligodendroglioma is a common CNS tumor in this species. Whether canine oligosarcoma shares with its human counterpart not only morphological aspects, but also molecular signatures, clinical behavior and responsiveness to therapy merits further investigation. In humans, oligodendroglial differentiation tends to confer significant clinical advantage with respect to prognosis and adjuvant treatment options. The awareness of such hallmarks and the investigation of their impact on prognosis are crucial for improved therapeutical strategies in dogs.
Resumo:
Based on a single-case observation, the descriptive label "leiomyomatoid angiomatous neuroendocrine tumor" (LANT) has been tentatively applied to what was perceived as a possible novel type of dual-lineage pituitary neoplasm with biphasic architecture. We report on two additional examples of an analogous phenomenon encountered in male patients, aged 59 years (Case 1) and 91 years (Case 2). Both tumors were intra- and suprasellar masses, measuring 5.6 cm × 4.4 cm × 3.4 cm, and 2.7 cm × 2 cm × 1.7 cm, respectively. Histologically, Case 1 was an FSH-cell adenoma interwoven by vascularized connective tissue septa that tended to exhibit incremental stages of adventitial overgrowth. The epithelial component of Case 2 corresponded to an LH-cell adenoma, and lay partitioned by a maze of paucicellular to hyalinized vascular axes. Irrespective of architectural variations, perivascular spindle cells exhibited immunopositivity for vimentin, muscular actin, and smooth muscle actin. Conversely, negative results were obtained for CD34, EMA, S100 protein, GFAP, and TTF-1. Ultrastructural study failed to reveal metaplastic cell forms involving transitional features between adenohypophyseal-epithelial and mesenchymal-contractile phenotype. We propose that LANT be regarded as a peculiar reflection of maladaptive angiogenesis in some pituitary adenomas, rather than a genuine hybrid neoplasm. While no mechanistic clue is forthcoming to account for this distinctive pattern, hemodynamic strain through direct arterial - rather than portal - supply of the adenoma's capillary bed may be one such explanatory factor. The apparent predilection of the LANT pattern for macroadenomas of the gonadotroph cell lineage remains unexplained.
Resumo:
BACKGROUND Mammary cell cultures are convenient tools for in vitro studies of mammary gland biology. However, the heterogeneity of mammary cell types, e.g., glandular milk secretory epithelial or myoepithelial cells, often complicates the interpretation of cell-based data. The present study was undertaken to determine the relevance of bovine primary mammary epithelial cells isolated from American Holstein (bMECUS) or Swiss Holstein-Friesian (bMECCH) cows, and of primary bovine mammary alveolar epithelial cells stably transfected with simian virus-40 (SV-40) large T-antigen (MAC-T) for in vitro analyses. This was evaluated by testing their expression pattern of cytokeratin (CK) 7, 18, 19, vimentin, and α-smooth muscle actin (α-SMA). RESULTS The expression of the listed markers was assessed using real-time quantitative PCR, flow cytometry and immunofluorescence microscopy. Characteristic markers of the mesenchymal (vimentin), myoepithelial (α-SMA) and glandular secretory cells (CKs) showed differential expression among the studied cell cultures, partly depending on the analytical method used. The relative mRNA expression of vimentin, CK7 and CK19, respectively, was lower (P < 0.05) in immortalized than in primary mammary cell cultures. The stain index (based on flow cytometry) of CK7 and CK19 protein was lower (P < 0.05) in MAC-T than in bMECs, while the expression of α-SMA and CK18 showed an inverse pattern. Immunofluorescence microscopy analysis mostly confirmed the mRNA data, while partly disagreed with flow cytometry data (e.g., vimentin level in MAC-T). The differential expression of CK7 and CK19 allowed discriminating between immortal and primary mammary cultures. CONCLUSIONS The expression of the selected widely used cell type markers in primary and immortalized MEC cells did not allow a clear preference between these two cell models for in vitro analyses studying aspects of milk composition. All tested cell models exhibited to a variable degree epithelial and mesenchymal features. Thus, based on their characterization with widely used cell markers, none of these cultures represent an unequivocal alveolar mammary epithelial cell model. For choosing the appropriate in vitro model additional properties such as the expression profile of specific proteins of interest (e.g., transporter proteins) should equally be taken into account.
Resumo:
Motility responses of the small intestine of iNOS deficient mice (iNOS −/−) and their wildtype littermates (iNOS+/+) to the inflammatory challenge of lipopolysaccharide (LPS) were investigated. LPS administration failed to attenuate intestinal transit in iNOS−/− mice but depressed transit in their iNOS+/+ littermates. Supporting an inhibitory role for sustained nitric oxide (NO) synthesis in the regulation of intestinal motility during inflammation, iNOS immunoreactivity was upregulated in all regions of the small intestine of iNOS+/+ mice. In contrast, neuronal NOS was barely affected. Cyclooxygenase activation was determined by prostaglandin E2 (PGE2) concentration. Following LPS challenge, PGE2 levels were elevated in all intestinal segments in both animal groups. Moreover, COX-1 and COX-2 protein levels were elevated in iNOS+/+ mice in response to LPS, while COX-2 levels were similarly increased in iNOS −/− intestine. However, no apparent relationship was observed between increased prostaglandin concentrations and attenuated intestinal transit. The presence of heme oxygenase 1 (HO-1) in the murine small intestine was also investigated. In both animal groups HO-1 immunoreactivity in the proximal intestine increased in response to treatment, while the constitutive protein levels detected in the middle and distal intestine were unresponsive to LPS administration. No apparent correlation of HO-1 to the suppression of small intestinal motility induced by LPS administration was detected. The presence of S-nitrosylated contractile proteins in the small intestine was determined. γ-smooth muscle actin was basally nitrosylated as well as in response to LPS, but myosin light chain kinase and myosin regulatory chain (MLC20) were not. In conclusion, in a model of acute intestinal inflammation, iNOS-produced NO plays a significant role in suppressing small intestinal motility while nNOS, COX-1, COX-2 and HO-1 do not participate in this event. S-nitrosylation of γ-smooth muscle actin is associated with elevated levels of nitric oxide in the smooth muscle of murine small intestine. ^
Resumo:
Thoracic aortic aneurysms and dissections (TAAD) are autosomal dominantly inherited in 19% of patients. Mapping studies determined that the disease is genetically heterogeneous with multiple loci and genetic mutations accounting for familial TAAD. However, regardless of the specific mutation, resulting pathology is consistently medial degeneration, characterized by increased proteoglycans and loss of elastic fibers. We tested the hypothesis that genetic mutations leading to familial TAAD alter common pathways in aortic smooth muscle cells (SMCs). Identification of mutations at R460 in TGFBR2 reveals a 5% contribution to TAAD, however downstream analysis of Smad2 phosphorylation in the TGF-β pathway is not commonly altered in familial or sporadic disease when compared to controls. Expression profiling using Illumina's Sentrix HumanRef 8 Expression Beadchip array was done on RNA isolated from SMCs explanted from 6 patients with inherited TAAD with no identified mutation and 3 healthy controls obtained from the International Institute for the Advancement of Medicine. Significant increases in expression of proteoglycan genes in patients' SMCs, specifically lumican, podocan, and decorin were confirmed using Q-PCR and tissue immunofluorescence. NCI's Ingenuity Pathway Analysis predicted alterations in the ERK, insulin receptor and SAPK/JNK pathways (p<0.001), which SMCs activate in response to cyclic stretch. Immunoblotting indicated increased phosphorylation of ERK and GSK-3β, a protein from the insulin receptor pathway, in explanted patient SMCs, also confirmed by increased immunoreactivity against phosphorylated ERK and GSK-3β in the sub-intimal SMCs from patient tissue compared to controls. To determine if mechanotransduction pathway activation was responsible for the medial degeneration a specific inhibitor of GSK-3β, SB216763 was incubated with control cells and significantly increased the expression levels of proteoglycans. Mechanical strain was also applied to control SMCs confirming pathways stimulation with stretch. Incubation with pathway inhibitors against insulin receptor and ERK pathways identify, for the first time that stretch induced GSK-3β phosphorylation may increase proteoglycan expression, and ERK phosphorylation may regulate the expression of MMP2, a protein known to degrade elastic fibers. Furthermore, specific mutations in SMC-specific β-myosin heavy chain and α-actin, in addition to upregulation of pathways activated by cyclic stretch suggest that SMC response to hemodynamic factors, play a role in this disease. ^
Resumo:
To meet the requirements for rapid tumor growth, a complex array of non-neoplastic vascular, fibroblastic, and immune cells are recruited to the tumor microenvironment. Understanding the origin, composition, and mechanism(s) for recruitment of these stromal components will help identify areas for therapeutic intervention. Previous findings have suggested that ex-vivo expanded bone marrow-derived MSC home to the sites of tumor development, responding to inflammatory signals and can serve as effective drug delivery vehicles. Therefore, we first sought to fully assess conditions under which MSC migrate to and incorporate into inflammatory microenvironments and the consequences of modulated inflammation. MSC delivered to animals bearing inflammatory insults were monitored by bioluminescence imaging and displayed specific tropism and selective incorporation into all tumor and wound sites. These findings were consistent across routes of tumor establishment, MSC administration, and immunocompetence. MSC were then used as drug delivery vehicles, transporting Interferon β to sites of pancreatic tumors. This therapy was effective at inhibiting pancreatic tumor growth under homeostatic conditions, but inhibition was lost when inflammation was decreased with CDDO-Me combination treatment. Next, to examine the endogenous tumor microenvironment, a series of tissue transplant experiments were carried out in which tissues were genetically labeled and engrafted in recipients prior to tumor establishment. Tumors were then analyzed for markers of tumor associated fibroblasts (TAF): α-smooth muscle actin (α-SMA), nerve glia antigen 2 (NG2), fibroblast activation protein (FAP), and fibroblast specific protein (FSP) as well as endothelial marker CD31 and macrophage marker F4/80. We determined the majority of α-SMA+, NG2+ and CD31+ cells were non-bone marrow derived, while most FAP+, FSP+, and F4/80+ cells were recruited from the bone marrow. In accord, transplants of prospectively isolated BM MSC prior to tumor development indicated that these cells were recruited to the tumor microenvironment and co-expressed FAP and FSP. In contrast, fat transplant experiments revealed recruited fat derived cells co-expressed α-SMA, NG2, and CD31. These results indicate TAF are a heterogeneous population composed of subpopulations with distinct tissues of origin. These models have provided a platform upon which further investigation into tumor microenvironment composition and tests for candidate drugs can be performed. ^
Resumo:
For analyzing the mechanism of energy transduction in the “motor” protein, myosin, it is opportune both to model the structural change in the hydrolytic transition, ATP (myosin-bound) + H2O → ADP⋅Pi (myosin-bound) and to check the plausibility of the model by appropriate site-directed mutations in the functional system. Here, we made a series of mutations to investigate the role of the salt-bridge between Glu-470 and Arg-247 (of chicken smooth muscle myosin) that has been inferred from crystallography to be a central feature of the transition [Fisher, A. J., Smith, C. A., Thoden, J. B., Smith, R., Sutoh, K., Holden, H. M., & Rayment, I. (1995) Biochemistry 34, 8960–8972]. Our results suggest that whether in the normal, or in the inverted, direction an intact salt-bridge is necessary for ATP hydrolysis, but when the salt-bridge is in the inverted direction it does not support actin activation. Normally, fluorescence changes result from adding nucleotides to myosin; these signals are reported by Trp-512 (of chicken smooth muscle myosin). Our results also suggest that structural impairments in the 470–247 region interfere with the transmission of these signals to the responsive Trp.
Resumo:
Normal human luminal and myoepithelial breast cells separately purified from a set of 10 reduction mammoplasties by using a double antibody magnetic affinity cell sorting and Dynabead immunomagnetic technique were used in two-dimensional gel proteome studies. A total of 43,302 proteins were detected across the 20 samples, and a master image for each cell type comprising a total of 1,738 unique proteins was derived. Differential analysis identified 170 proteins that were elevated 2-fold or more between the two breast cell types, and 51 of these were annotated by tandem mass spectrometry. Muscle-specific enzyme isoforms and contractile intermediate filaments including tropomyosin and smooth muscle (SM22) alpha protein were detected in the myoepithelial cells, and a large number of cytokeratin subclasses and isoforms characteristic of luminal cells were detected in this cell type. A further 134 nondifferentially regulated proteins were also annotated from the two breast cell types, making this the most extensive study to date of the protein expression map of the normal human breast and the basis for future studies of purified breast cancer cells.
Resumo:
Phosphorylation of the regulatory light chain (RLC) activates the actin-dependent ATPase activity of Dictyostelium myosin II. To elucidate this regulatory mechanism, we characterized two mutant myosins, MyΔC1225 and MyΔC1528, which are truncated at Ala-1224 and Ser-1527, respectively. These mutant myosins do not contain the C-terminal assembly domain and thus are unable to form filaments. Their activities were only weakly regulated by RLC phosphorylation, suggesting that, unlike smooth muscle myosin, efficient regulation of Dictyostelium myosin II requires filament assembly. Consistent with this hypothesis, wild-type myosin progressively lost the regulation as its concentration in the assay mixture was decreased. Dephosphorylated RLC did not inhibit the activity when the concentration of myosin in the reaction mixture was very low. Furthermore, 3xAsp myosin, which does not assemble efficiently due to point mutations in the tail, also was less well regulated than the wild-type. We conclude that the activity in the monomer state is exempt from inhibition by the dephosphorylated RLC and that the complete regulatory switch is formed only in the filament structure. Interestingly, a chimeric myosin composed of Dictyostelium heavy meromyosin fused to chicken skeletal light meromyosin was not well regulated by RLC phosphorylation. This suggests that, in addition to filament assembly, some specific feature of the filament structure is required for efficient regulation.
Resumo:
SPARC (secreted protein acidic and rich in cysteine)/BM 40/osteonectin is a matricellular protein shown to function as a counteradhesive factor that induces cell rounding and as an inhibitor of cell proliferation. These activities have been defined in cell culture, in which interpretation has been complicated by the presence of endogenous SPARC. We therefore sought to determine whether cell shape and proliferation would be affected by the absence of SPARC. Mesangial cells, fibroblasts, and aortic smooth muscle cells were isolated from SPARC-null and age-matched, wild-type mice. In contrast to wild-type cells, SPARC-null mesangial cells exhibited a flat morphology and an altered actin cytoskeleton. In addition, vinculin-containing focal adhesions were distributed over the center of SPARC-null cells, whereas in wild-type cells, the number of focal adhesions was reduced, and these structures were restricted largely to the cell periphery. Although the SPARC-null fibroblasts did not display overt differences in cell morphology, the cells responded to exogenous recombinant SPARC by rounding up in a manner similar to that of wild-type fibroblasts. Thus, the expression of endogenous SPARC is not required for the response of cells to SPARC. Additionally, SPARC-null mesangial cells, fibroblasts, and smooth muscle cells proliferated faster than their respective wild-type counterparts. Null cells also showed a greater sensitivity to the inhibition of cell cycle progression by the addition of recombinant SPARC. The increased proliferation rate of SPARC-null cells appeared to be mediated, at least in part, by an increase in the cell cycle regulatory protein cyclin A. We conclude that the expression of SPARC influences the cellular architecture of mesangial cells and that SPARC plays a role in the regulation of cell cycle in mesangial cells, fibroblasts, and smooth muscle cells.
Resumo:
This study was undertaken to determine the modulation of uterine function by chorionic gonadotrophin (CG) in a nonhuman primate. Infusion of recombinant human CG (hCG) between days 6 and 10 post ovulation initiated the endoreplication of the uterine surface epithelium to form distinct epithelial plaques. These plaque cells stained intensely for cytokeratin and the proliferating cell nuclear antigen. The stromal fibroblasts below the epithelial plaques stained positively for α-smooth muscle actin (αSMA). Expression of αSMA is associated with the initiation of decidualization in the baboon endometrium. Synthesis of the glandular secretory protein glycodelin, as assessed by Western blot analysis, was markedly up-regulated by hCG, and this increase was confirmed by immunocytochemistry, Northern blot analysis, and reverse transcriptase-PCR. To determine whether hCG directly modulated these uterine responses, we treated ovariectomized baboons sequentially with estradiol and progesterone to mimic the hormonal profile of the normal menstrual cycle. Infusion of hCG into the oviduct of steroid-hormone-treated ovariectomized baboons induced the expression of αSMA in the stromal cells and glycodelin in the glandular epithelium. The epithelial plaque reaction, however, was not readily evident. These studies demonstrate a physiological effect of CG on the uterine endometrium in vivo and suggest that the primate blastocyst signal, like the blastocyst signals of other species, modulates the uterine environment prior to implantation.
Resumo:
We have cloned and expressed a Ca(2+)-activated K+ channel beta-subunit from human brain. The open reading frame encodes a 191-amino acid protein possessing significant homology to a previously described subunit cloned from bovine muscle. The gene for this subunit is located on chromosome 5 at band q34 (hslo-beta). There is no evidence for alternative RNA splicing of this gene product. hslo-beta mRNA is abundantly expressed in smooth muscle, but expression levels are low in most other tissues, including brain. Brain subregions in which beta-subunit mRNA expression is relatively high are the hippocampus and corpus callosum. The coexpression of hslo-beta mRNA together with hslo-alpha subunits in either Xenopus oocytes or stably transfected HEK 293 cells give rise to Ca(2+)-activated potassium currents with a much increased calcium and/or voltage sensitivity. These data indicate that the beta-subunit shows a tissue distribution different to that of the alpha-subunit, and in many tissues there may be no association of alpha-subunits with beta-subunits. These beta-subunits can play a functional role in the regulation of neuronal excitability by tuning the Ca2+ and/or the voltage dependence of alpha-subunits.
Resumo:
rho-like GTP binding proteins play an essential role in regulating cell growth and actin polymerization. These molecular switches are positively regulated by guanine nucleotide exchange factors (GEFs) that promote the exchange of GDP for GTP. Using the interaction-trap assay to identify candidate proteins that bind the cytoplasmic region of the LAR transmembrane protein tyrosine phosphatase (PT-Pase), we isolated a cDNA encoding a 2861-amino acid protein termed Trio that contains three enzyme domains: two functional GEF domains and a protein serine/threonine kinase (PSK) domain. One of the Trio GEF domains (Trio GEF-D1) has rac-specific GEF activity, while the other Trio GEF domain (Trio GEF-D2) has rho-specific activity. The C-terminal PSK domain is adjacent to an Ig-like domain and is most similar to calcium/calmodulin-dependent kinases, such as smooth muscle myosin light chain kinase which similarly contains associated Ig-like domains. Near the N terminus, Trio has four spectrin-like repeats that may play a role in intracellular targeting. Northern blot analysis indicates that Trio has a broad tissue distribution. Trio appears to be phosphorylated only on serine residues, suggesting that Trio is not a LAR substrate, but rather that it forms a complex with LAR. As the LAR PTPase localizes to the ends of focal adhesions, we propose that LAR and the Trio GEF/PSK may orchestrate cell-matrix and cytoskeletal rearrangements necessary for cell migration.
Resumo:
The endothelial nitric oxide synthase (ec-NOS) plays a key role in the transduction of signals from the bloodstream to the underlying smooth muscle. ecNOS undergoes a complex series of covalent modifications, including myristoylation and palmitoylation, which appear to play a role in ecNOS membrane association. Mutagenesis of the myristoylation site, which prevents both myristoylation and palmitoylation, blocks ecNOS targeting to cell membranes. Further, as described for some G-protein alpha subunits, both membrane association and palmitoylation of ecNOS are dynamically regulated: in response to agonists, the enzyme undergoes partial redistribution to the cell cytosol concomitant with depalmitoylation. To clarify the role of palmitoylation in determining ecNOS subcellular localization, we have constructed palmitoylation-deficient mutants of ecNOS. Serine was substituted for cysteine at two potential palmitoylation sites (Cys-15 and Cys-26) by site-directed mutagenesis. Immunoprecipitation of ecNOS mutants following cDNA transfection and biosynthetic labeling with [3H]palmitate revealed that mutagenesis of either cysteine residue attenuated palmitoylation, whereas replacement of both residues completely eliminated palmitoylation. Analysis of N-terminal deletion mutations of ecNOS demonstrated that the region containing these two cysteine residues is both necessary and sufficient for enzyme palmitoylation. The cysteines thus identified as the palmitoylation sites for ecNOS are separated by an unusual (Gly-Leu)5 sequence and appear to define a sequence motif for dual acylation. We analyzed the subcellular distribution of ecNOS mutants by differential ultracentrifugation and found that mutagenesis of the ecNOS palmitoylation sites markedly reduced membrane association of the enzyme. These results document that ecNOS palmitoylation is an important determinant for the subcellular distribution of ecNOS and identify a new motif for the reversible palmitoylation of signaling proteins.