909 resultados para silica
Resumo:
In this work the synthesis of cubic, FDU-1 type, ordered mesoporous silica (OMS) was developed from two types of silicon source, tetraethyl orthosilicate (TEOS) and a less expensive compound, sodium silicate (Na(2)Si(3)O(7)), in the presence of a new triblock copolymer template Vorasurf 504 (EO(38)BO(46)EO(38)). For both silicon precursors the synthesis temperature was evaluated. For TEOS the effect of polymer dissolution in methanol and the acid solution (HCl and HBr) on the material structure was analyzed. For Na(2)Si(3)O(7) the influence of the polymer mass and the hydrothermal treatment time were the explored experimental parameters. The samples were examined by Small Angle X-ray Scattering (SAXS) and Nitrogen Sorption. For both precursors the decrease on the synthesis temperature from ambient, -25 degrees C, to -15 degrees C improved the ordered porous structure. For TEOS, the SAXS results showed that there is an optimum amount of hydrophobic methanol that contributed to dissolve the polymer but did not provoke structural disorder. The less electronegative Br-ions, when compared to Cl-, induced a more ordered porous structure, higher surface areas and larger lattice parameters. For Na(2)Si(3)O(7) the increase on the hydrothermal treatment time as well as the use of an optimized amount of polymer promoted a better ordered porous structure. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The immobilization of gold nanoparticles (Au NPs) on silica is made possible by the functionalization of the silica surfaces with organosilanes. Au NPs could only be stabilized and firmly attached to silica-support surfaces that were previously modified with amino groups. Au NPs could not be stabilized on bare silica surfaces and most of the NPs were then found in the solution. The metal-support interactions before and after the Au NP formation, observed by X-ray absorption fine structure spectroscopy (XAFS), indicate a stronger interaction of gold-(III) ions with amino-modified silica surfaces than with the silanol groups in bare silica. An amino-modified, silica-based, magnetic support was used to prepare an active Au NP catalyst for the chemoselective oxidation of alcohols, a reaction of great interest for the fine chemical industry.
Resumo:
Occupational exposure to respirable crystalline silica and to radiation emitted by natural radionuclides present both in rocks and sands was studied in the Brazilian extractive process and granite product manufacture. Respirable airborne dust samples were collected in working environments, where workers perform different tasks with distinct commercial granites types, and also in places where sandblasters work with sands from different origins. The free crystalline silica contents were determined using X-ray diffraction of the respirable particulate fraction of each sample. Dust samples from granite cutting and sandblasting ambient had the natural radionuclides concentrations measured by gamma spectrometry. Dust concentrations in the workplaces were quite variable, reaching values up to 10 times higher than the respirable particle mass threshold limit value (TLV) set by the American Conference for Governmental Industrial Hygienists of 3 mg m(-3). Also the free crystalline silica concentrations were high. reaching values up to 48 times the TLV of 0.025 mg m(-3). Additionally, our results suggest that the risk of radiation-induced cancer in the granite or marble industries is negligible. However, the combined exposure to dust, gamma radiation, and radon daughter products could result in the enhancement of lung cancer risks associated to sandblasting activities. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Two-photon polymerization has emerged as a powerful tool to design complex three-dimensional microstructures for applications ranging from biology to nanophotonics. To broaden the application spectrum of such microstructures, different materials have been incorporated to the polymers, aiming at specific applications. In this paper we report the fabrication of microstructures containing rhodamine 610, which display strong fluorescence upon one- and two-photon excitation. The latter increases light-penetration depth and spatial selectivity of luminescence. We also demonstrate that by using silica submicrometric wires we were able to select individual microstructures to be excited, which could be explored for designing microstructure-based optical circuits.
Resumo:
Pb(2)CrO(5) nanoparticles were embedded in an amorphous SiO(2) matrix by the sol-gel process. The pH and heat treatment effects were evaluated in terms of structural, microstructural and optical properties from Pb(2)CrO(5)/SiO(2) compounds. X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), energy dispersive spectroscopy (EDS), and diffuse reflectance techniques were employed. Kubelka-Munk theory was used to calculate diffuse reflectance spectra that were compared to the experimental results. Finally, colorimetric coordinates of the Pb(2)CrO(5)/SiO(2) compounds were shown and discussed. In general, an acid pH initially dissolves Pb(2)CrO(5) nanoparticles and following heat treatment at 600 A degrees C crystallized into PbCrO(4) composition with grain size around 6 nm in SiO(2) matrix. No Pb(2)CrO(5) solubilization was observed for basic pH. These nanoparticles were incorporated in silica matrix showing a variety of color ranging from yellow to orange.
Resumo:
This paper reports on the effect of glass ceramic silica matrix on [CrO4](4-) and Cr2O3 NIR and visible luminescence. Chromium-containing silica was obtained by precipitation from water-glass and chromium nitrate acid solution with thermal treatment at 1000 degrees C. From XRD results silica and silica-chromium samples are crystalline. The chromium emission spectrum presents two main broad bands: one in the NIR region (1.1-1.7 mu m) and other in the visible region (0.6-0.7 mu m) assigned to Cr4+ and to Cr3+, respectively. This thermal treated glass ceramic silica-chromium sample stabilizes the [CrO4](4-) where Cr4+ substitutes for Si4+ and also hexacoordinated Cr3+ group probably as segregated phase in the system. It can be pointed out that luminescence spectroscopy is a powerful toot for detecting the two chromium optical centers in the glass ceramic silica. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Lithium nitrate has been used to prevent and to mediate the expansion caused by alkali-silica reaction (ASR). However, there is limited information on how it affects the existing reaction products caused by ASR. The aim of the present work is to determine the modifications caused by the LiNO3 treatment on the structure of the gel produced by ASR. ASR gel samples obtained from a concrete dam were exposed to an aqueous solution of lithium nitrate and sodium hydroxide with molar LiNO3/NaOH = 0.74, and the resulting products were analyzed by X-ray diffraction, infrared spectroscopy, and solid-state nuclear magnetic resonance of Si-29, Na-23, and Li-7. The treatment of the gel samples produces significant structural modifications in ASR products. A new amorphous silicate compound incorporating Li+ ions is formed, with an average silicate network that can be described as linear in contrast with the layered structure of the original gel. This elimination of the layered structure after the Li-based treatments may be related to the reduction of the tendency of the gel to expand. Also, several crystalline compounds containing potassium indicate the release of this species from the original ASR gel.
Resumo:
The optical, magnetic and structural properties of Eu doped low silica calcium aluminosilicate glasses were investigated. The optical absorption coefficient presented two bands at 39 246 and 29 416 cm(-1), which were assigned respectively to the 4f(7) ((8)S(7/2)) -> 4f(6) (4F(J)) 5d (T(2g)), and 4f(7) ((8)S(7/2)) -> 4f(6) (4F(J)) 5d (E(g)) transitions of Eu(2+). The fluorescence measured at 300 K on a sample doped with 0.5 wt% of Eu(2)O(3) exhibited a broad band centered at 17 350 cm(-1), which is attributed to the 4f(6)5d -> 4f(7) transition of Eu(2+), whereas the additional peaks are due to the (5)D(0) -> (7)F(J) (J = 1, 2, 4) transitions of Eu(3+). From magnetization and XANES data it was possible to evaluate the fractions of Eu(2+) and Eu(3+) for the sample doped with 0.5 and 5.0 wt% of Eu(2)O(3), the values of which were approximately 30 and 70%, respectively.
Resumo:
Ruthenium hydroxide supported on silica-coated magnetic nanoparticles was shown to be an efficient heterogeneous catalyst for the liquid-phase oxidation of a wide range of alcohols using molecular oxygen as a sole oxidant in the absence of co-catalysts or additives. The material was prepared through the loading of the amino modified support with ruthenium(III) ions from an aqueous solution of ruthenium(III) chloride followed by treatment with sodium hydroxide to form ruthenium hydroxide species. Characterizations suggest that ruthenium hydroxide is highly dispersed on the support surface, with no ruthenium containing crystalline phases being detected. Various carbonylic monoterpenoids important for fragrance and pharmaceutical industries can be obtained in good to excellent yields starting from biomass-based monoterpenic alcohols, such as isobomeol, perillyl alcohol, carveol, and citronellol. The catalyst undergoes no metal leaching and can be easily recovered by the application of an external magnet and re-used. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
In the present work, the surface of the Eu-BTC = [Eu(EMA)(H(2)O)(2)], [Eu(TLA)(H(2)O)(4)] and [Eu(TMA)(H(2)O)(6)] complexes (EMA = 1,2,3-benzenetricarboxylate, TLA = 1,2,4-benzenetricarboxylate and TMA = 1,3,5-benzenetricarboxylate) was modified using 3-aminopropyltriethoxysilane (APTES) by a new microwave assisted method that proved to be simple and efficient. According to our observations, the most efficient luminescence is the material based on APTES incorporating [Eu(TMA)(H(2)O)(6)] complexes, denoted as Eu-TMA-Si, shows the highest emission efficiency. Therefore, it is proposed as a promising material for molecular conjugation in clinical diagnosis. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Presented herein is the synthesis and characterization of a new Fe(III)Zn(II) complex containing a Fe(III)-bound phenolate with a carbonyl functional group, which was anchored to 3-aminopropylfunctionalized silica as the solid support. The catalytic efficiency of the immobilized catalyst in the hydrolysis of 2,4-bis (dinitrophenyl) phosphate is comparable to the homogeneous reaction, and the supported catalyst can be reused for subsequent diester hydrolysis reactions.
Resumo:
We investigate magnetorheological fluids (MRFs) prepared with carbonyl iron powder and different types of hydrophobic and hydrophilic fumed silica. The rheological properties of the MRF suspensions were investigated with and without an applied magnetic field. The MRF samples prepared with hydrophobic silicas presented a more pronounced thixotropic effect and a higher recovery rate than those prepared with hydrophilic silicas. The application of a magnetic field to all the MRFs samples investigated leads to an increase in the viscosity and the thixotropic effect. MRF prepared with hydrophobic silicas presented smaller values of the viscosity than those prepared with hydrophilic silicas. At low applied magnetic fields, the type of the silica used to prepare the MRF leads to noticeable differences in the shear stress. However, these differences disappear at high magnetic fields. The results obtained showed that MRF samples prepared with the hydrophobic silica with the biggest particle diameter presented better characteristics for magnetorheological fluids, with higher values of yield stress, recovery rate, and elastic modulus. (C) 2009 The Society of Rheology. [DOI: 10.1122/1.3086870]
Resumo:
The performance of a carbon paste electrode (CPE) modified with SBA-15 nanostructured silica organofunctionalised with 2-benzothiazolethiol in the simultaneous determination of Pb(II), Cu(II) and Hg(II) ions in natural water and sugar cane spirit (cachaca) is described. Pb(II), Cu(II) and Hg(II) were pre-concentrated on the surface of the modified electrode by complexing with 2-benzothiazolethiol and reduced at a negative potential (-0.80 V). Then the reduced products were oxidised by DPASV procedure. The fact that three stripping peaks appeared on the voltammograms at the potentials of -0.48 V (Pb2+), -0.03 V (Cu2+) and +0.36 V (Hg2+) in relation to the SCE, demonstrates the possibility of simultaneous determination of Pb2+, Cu2+ and Hg2+. The best results were obtained under the following optimised conditions: 100 mV pulse amplitude, 3 min accumulation time, 25 mV s(-1) scan rate in phosphate solution pH 3.0. Using such parameters, calibration graphs were linear in the concentration ranges of 3.00-70.0 x 10(-7) mol L-1 (Pb2+), 8.00-100.0 X 10(-7) mol L-1 (Cu2+) and 2.00-10.0 x 10(-6) mol L-1 (Hg2+). Detection limits of 4.0 x 10(-8) mol L-1 (Pb2+), 2.0 x 10(-7) mol L-1 (Cu2+) and 4.0 x 10(-7) mol L-1 (Hg2+) were obtained at the signal noise ratio (SNR) of 3. The results indicate that this electrode is sensitive and effective for simultaneous determination of Pb2+, Cu2+ and Hg2+ in the analysed samples. (C) 2008 Published by Elsevier B.V.
Resumo:
Neste trabalho, foi obtido o xerogel híbrido 3-(1,4-fenilenodiamina) propil/sílica, usando-se o método sol-gel de síntese, variando-se as condições experimentais de síntese. Foram usados como reagentes precursores o tetraetilortosilicato (TEOS) e o 3-[(1,4-fenilenodiamina)propil]trimetoxisilano (FDAPS) sintetizado em nosso laboratório. As condições experimentais de síntese variadas foram: a concentração de precursor orgânico (FDAPS), a temperatura de gelificação, o tipo de solvente e o pH do meio reacional. O trabalho foi dividido em duas etapas: na primeira, foram obtidas duas séries de materiais onde se variou a temperatura de gelificação (5, 25, 50 e 70 °C), além da quantidade de precursor orgânico (FDAPS), adicionado à síntese (1,5 e 5,0 mmol). Na segunda etapa variou-se o pH do meio reacional (4, 7 e 10) além do tipo de solvente (etanol, butanol e octanol), mantendo-se a quantidade de precursor orgânico adicionado e a temperatura de gelificação constantes em 5,0 mmol e 25 oC, respectivamente. Em ambas etapas utilizou-se HF como catalisador e manteve-se o sistema fechado, porém não vedado, durante a gelificação. Na caracterização dos xerogéis híbridos foram usadas as seguintes técnicas: a) termoanálise no infravermelho, para estimar a estabilidade térmica do componente orgânico além da fração de orgânicos dispersos na superfície; b) isotermas de adsorção e dessorção de nitrogênio, para determinação da área superficial específica, do volume e da distribuição de tamanho de poros; c) análise elementar para estimar a fração de componente orgânico presente no xerogel e d) microscopia eletrônica de varredura onde foi possível observar textura, compactação e presença de partículas primárias nos xerogéis. A partir dos resultados de caracterização foi possível avaliar a influência dos parâmetros experimentais de síntese nas características dos xerogéis híbridos obtidos. Xerogéis híbridos com maior teor de orgânicos foram mais influenciados pela variação da temperatura de gelificação. Um aumento na temperatura de gelificação produz xerogéis com menor porosidade, entretanto, com maior estabilidade térmica do componente orgânico. Considerando-se estabilidade térmica e porosidade, as amostras gelificadas a 25 oC apresentaram os melhores resultados. Em relação à variação de pH e solvente, as amostras gelificadas em pH ácido foram as que apresentaram maior porosidade, enquanto que a maior estabilidade térmica foi alcançada usando-se etanol como solvente.
Resumo:
VASKE, N.R. Contribuição ao Estudo da Argamassa com Adição de Sílica Ativa em Reforços de Elementos Comprimidos de Concreto. 2004. Dissertação (Mestrado em Engenharia) – Programa de Pós-Graduação em Engenharia Civil, UFRGS, Porto Alegre. No uso de argamassa com adição de sílica ativa como material de reforço, adotam-se valores de resistência à compressão provenientes de ensaios normatizados, cujos valores não são representativos da técnica adotada. Na execução de um reforço, cada porção de argamassa que é lançada sofre um adensamento que varia em função da energia com que colide com o substrato, gerando, desta forma, pontos de diferentes resistências por toda a extensão do reforço, refletindo diretamente sobre a resistência do reforço como um todo, que por sua vez define a nova capacidade de carga do elemento estrutural em questão. Procurando verificar o comportamento “in loco” da argamassa de reforço, executou-se uma placa de argamassa com adição de sílica ativa com dimensões iguais a um reforço de uma das faces de um pilar, sendo extraídas amostras prismáticas desta placa e ensaiadas à compressão e determinada uma resistência média que, comparada com a resistência média obtida de corpos-de-prova cilíndricos, moldados com a mesma argamassa com que foi executada a placa demonstrou que a resistência média à compressão das amostras prismáticas extraídas da placa apresenta, particularmente neste estudo, uma redução em relação à resistência média à compressão resultante dos corpos-de-prova cilíndricos da ordem de 35%. Em seqüência foram moldados seis pilares de concreto, sendo três reforçados com argamassa com adição de sílica ativa e os outros três como testemunhos. Após a ruptura dos pilares foram analisados os resultados teóricos e resultados experimentais das cargas de ruptura, aderência entre o substrato e a argamassa de reforço e a redução de resistência à compressão observada nos ensaios preliminares da argamassa. Pelas análises realizadas verificou-se a eficiência da técnica de reforço quanto ao aumento da capacidade de carga, da ordem de 72 %, aderência adequada entre o substrato e a argamassa de reforço e confirmação da redução da resistência à compressão da argamassa nos níveis propostos.