916 resultados para shift-share
Resumo:
The perceived speed of motion in one part of the visual field is influenced by the speed of motion in its surrounding fields. Little is known about the cellular mechanisms causing this phenomenon. Recordings from mammalian visual cortex revealed that speed preference of the cortical cells could be changed by displaying a contrast speed in the field surrounding the cell’s classical receptive field. The neuron’s selectivity shifted to prefer faster speed if the contextual surround motion was set at a relatively lower speed, and vice versa. These specific center–surround interactions may underlie the perceptual enhancement of speed contrast between adjacent fields.
Resumo:
The boronium-carbonium continuum was extended to include hypercoordinated protonated methanes and their boron analogs. The 11B NMR chemical shifts of the hypercoordinated hydriodo boron compounds and the 13C NMR chemical shifts of the corresponding isoelectronic and isostructural carbocations were calculated by using the GIAO-MP2 method. The data show good linear correlation between 11B and 13C NMR chemical shifts, which indicates that the same factors that determine the chemical shifts of the boron nuclei also govern the chemical shifts of carbon nuclei of these hypercoordinated hydriodo compounds.
Resumo:
Peer reviewed
Resumo:
In coming decades, global climate changes are expected to produce large shifts in vegetation distributions at unprecedented rates. These shifts are expected to be most rapid and extreme at ecotones, the boundaries between ecosystems, particularly those in semiarid landscapes. However, current models do not adequately provide for such rapid effects—particularly those caused by mortality—largely because of the lack of data from field studies. Here we report the most rapid landscape-scale shift of a woody ecotone ever documented: in northern New Mexico in the 1950s, the ecotone between semiarid ponderosa pine forest and piñon–juniper woodland shifted extensively (2 km or more) and rapidly (<5 years) through mortality of ponderosa pines in response to a severe drought. This shift has persisted for 40 years. Forest patches within the shift zone became much more fragmented, and soil erosion greatly accelerated. The rapidity and the complex dynamics of the persistent shift point to the need to represent more accurately these dynamics, especially the mortality factor, in assessments of the effects of climate change.
Resumo:
During light-driven proton transport bacteriorhodopsin shuttles between two protein conformations. A large-scale structural change similar to that in the photochemical cycle is produced in the D85N mutant upon raising the pH, even without illumination. We report here that (i) the pKa values for the change in crystallographic parameters and for deprotonation of the retinal Schiff base are the same, (ii) the retinal isomeric configuration is nearly unaffected by the protein conformation, and (iii) preventing rotation of the C13—C14 double bond by replacing the retinal with an all-trans locked analogue makes little difference to the Schiff base pKa. We conclude that the direct cause of the conformational shift is destabilization of the structure upon loss of interaction of the positively charged Schiff base with anionic residues that form its counter-ion.
Resumo:
Fast transverse relaxation of 1H, 15N, and 13C by dipole-dipole coupling (DD) and chemical shift anisotropy (CSA) modulated by rotational molecular motions has a dominant impact on the size limit for biomacromolecular structures that can be studied by NMR spectroscopy in solution. Transverse relaxation-optimized spectroscopy (TROSY) is an approach for suppression of transverse relaxation in multidimensional NMR experiments, which is based on constructive use of interference between DD coupling and CSA. For example, a TROSY-type two-dimensional 1H,15N-correlation experiment with a uniformly 15N-labeled protein in a DNA complex of molecular mass 17 kDa at a 1H frequency of 750 MHz showed that 15N relaxation during 15N chemical shift evolution and 1HN relaxation during signal acquisition both are significantly reduced by mutual compensation of the DD and CSA interactions. The reduction of the linewidths when compared with a conventional two-dimensional 1H,15N-correlation experiment was 60% and 40%, respectively, and the residual linewidths were 5 Hz for 15N and 15 Hz for 1HN at 4°C. Because the ratio of the DD and CSA relaxation rates is nearly independent of the molecular size, a similar percentagewise reduction of the overall transverse relaxation rates is expected for larger proteins. For a 15N-labeled protein of 150 kDa at 750 MHz and 20°C one predicts residual linewidths of 10 Hz for 15N and 45 Hz for 1HN, and for the corresponding uniformly 15N,2H-labeled protein the residual linewidths are predicted to be smaller than 5 Hz and 15 Hz, respectively. The TROSY principle should benefit a variety of multidimensional solution NMR experiments, especially with future use of yet somewhat higher polarizing magnetic fields than are presently available, and thus largely eliminate one of the key factors that limit work with larger molecules.
Resumo:
The reaction center from Rhodobacter sphaeroides uses light energy for the reduction and protonation of a quinone molecule, QB. This process involves the transfer of two protons from the aqueous solution to the protein-bound QB molecule. The second proton, H+(2), is supplied to QB by Glu-L212, an internal residue protonated in response to formation of QA− and QB−. In this work, the pathway for H+(2) to Glu-L212 was studied by measuring the effects of divalent metal ion binding on the protonation of Glu-L212, which was assayed by two types of processes. One was proton uptake from solution after the one-electron reduction of QA (DQA→D+QA−) and QB (DQB→D+QB−), studied by using pH-sensitive dyes. The other was the electron transfer kAB(1) (QA−QB→QAQB−). At pH 8.5, binding of Zn2+, Cd2+, or Ni2+ reduced the rates of proton uptake upon QA− and QB− formation as well as kAB(1) by ≈an order of magnitude, resulting in similar final values, indicating that there is a common rate-limiting step. Because D+QA− is formed 105-fold faster than the induced proton uptake, the observed rate decrease must be caused by an inhibition of the proton transfer. The Glu-L212→Gln mutant reaction centers displayed greatly reduced amplitudes of proton uptake and exhibited no changes in rates of proton uptake or electron transfer upon Zn2+ binding. Therefore, metal binding specifically decreased the rate of proton transfer to Glu-L212, because the observed rates were decreased only when proton uptake by Glu-L212 was required. The entry point for the second proton H+(2) was thus identified to be the same as for the first proton H+(1), close to the metal binding region Asp-H124, His-H126, and His-H128.
Resumo:
Paired Ig-like receptors (PIR) that can reciprocally modulate cellular activation have been described in mammals. In the present study, we searched expressed sequence tag databases for PIR relatives to identify chicken expressed sequence tags predictive of ≈25% amino acid identity to mouse PIR. Rapid amplification of cDNA ends (RACE)-PCR extension of expressed sequence-tag sequences using chicken splenic cDNA as a template yielded two distinct cDNAs, the sequence analysis of which predicted protein products with related extracellular Ig-like domains. Chicken Ig-like receptor (CHIR)-A was characterized by its transmembrane segment with a positively charged histidine residue and short cytoplasmic tail, thereby identifying CHIR-A as a candidate-activating receptor. Conversely, CHIR-B was characterized by its nonpolar transmembrane segment and cytoplasmic tail with two immunoreceptor tyrosine-based inhibitory motifs, indicating that it may serve as an inhibitory receptor. The use of CHIR amino acid sequences in a search for other PIR relatives led to the recognition of mammalian Fc receptors as distantly related genes. Comparative analyses based on amino acid sequences and three-dimensional protein structures provided molecular evidence for common ancestry of the PIR and Fc receptor gene families.
Resumo:
The RegA proteins from the bacteriophage T4 and RB69 are translational repressors that control the expression of multiple phage mRNAs. RegA proteins from the two phages share 78% sequence identity; however, in vivo expression studies have suggested that the RB69 RegA protein binds target RNAs with a higher affinity than T4 RegA protein. To study the RNA binding properties of T4 and RB69 RegA proteins more directly, the binding sites of RB69 RegA protein on synthetic RNAs corresponding to the translation initiation region of two RB69 target genes were mapped by RNase protection assays. These assays revealed that RB69 RegA protein protects nucleotides –9 to –3 (relative to the start codon) on RB69 gene 44, which contains the sequence GAAAAUU. On RB69 gene 45, the protected site (nucleotides –8 to –3) contains a similar purine-rich sequence: GAAAUA. Interestingly, T4 RegA protein protected the same nucleotides on these RNAs. To examine the specificity of RNA binding, quantitative RNA gel shift assays were performed with synthetic RNAs corresponding to recognition elements (REs) in three T4 and three RB69 mRNAs. Comparative gel shift assays demonstrated that RB69 RegA protein has an ∼7-fold higher affinity for T4 gene 44 RE RNA than T4 RegA protein. RB69 RegA protein also binds RB69 gene 44 RE RNA with a 4-fold higher affinity than T4 RegA protein. On the other hand, T4 RegA exhibited a higher affinity than RB69 RegA protein for RB69 gene 45 RE RNA. With respect to their affinities for cognate RNAs, both RegA proteins exhibited the following hierarchy of affinities: gene 44 > gene 45 > regA. Interestingly, T4 RegA exhibited the highest affinity towards RB69 gene 45 RE RNA, whereas RB69 RegA protein had the highest affinity for T4 gene 44 RE RNA. The helix–loop groove RNA binding motif of T4 RegA protein is fully conserved in RB69 RegA protein. However, homology modeling of the structure of RB69 RegA protein reveals that the divergent residues are clustered in two areas of the surface, and that there are two large areas of high conservation near the helix–loop groove, which may also play a role in RNA binding.
Resumo:
By exploiting the ability of Pseudomonas aeruginosa to infect a variety of vertebrate and nonvertebrate hosts, we have developed model systems that use plants and nematodes as adjuncts to mammalian models to help elucidate the molecular basis of P. aeruginosa pathogenesis. Our studies reveal a remarkable degree of conservation in the virulence mechanisms used by P. aeruginosa to infect hosts of divergent evolutionary origins.
Resumo:
An extensive, highly diversified multigene family of novel immune-type receptor (nitr) genes has been defined in Danio rerio (zebrafish). The genes are predicted to encode type I transmembrane glycoproteins consisting of extracellular variable (V) and V-like C2 (V/C2) domains, a transmembrane region and a cytoplasmic tail. All of the genes examined encode immunoreceptor tyrosine-based inhibition motifs in the cytoplasmic tail. Radiation hybrid panel mapping and analysis of a deletion mutant line (b240) indicate that a minimum of ≈40 nitr genes are contiguous in the genome and span ≈0.6 Mb near the top of zebrafish linkage group 7. One flanking region of the nitr gene complex shares conserved synteny with a region of mouse chromosome 7, which shares conserved synteny with human 19q13.3-q13.4 that encodes the leukocyte receptor cluster. Antibody-induced crosslinking of Nitrs that have been introduced into a human natural killer cell line inhibits the phosphorylation of mitogen-activated protein kinase that is triggered by natural killer-sensitive tumor target cells. Nitrs likely represent intermediates in the evolution of the leukocyte receptor cluster.
Resumo:
Accumulation of misfolded proteins in the cell at high temperature may cause entry into a nonproliferating, heat-shocked state. The imino acid analog azetidine 2-carboxylic acid (AZC) is incorporated into cellular protein competitively with proline and can misfold proteins into which it is incorporated. AZC addition to budding yeast cells at concentrations sufficient to inhibit proliferation selectively activates heat shock factor (HSF). We find that AZC treatment fails to cause accumulation of glycogen and trehalose (Msn2/4-dependent processes) or to induce thermotolerance (a protein kinase C-dependent process). However, AZC-arrested cells can accumulate glycogen and trehalose and can acquire thermotolerance in response to a subsequent heat shock. We find that AZC treatment arrests cells in a viable state and that this arrest is reversible. We find that cells at high temperature or cells deficient in the ubiquitin-conjugating enzymes Ubc4 and Ubc5 are hypersensitive to AZC-induced proliferation arrest. We find that AZC treatment mimics temperature up-shift in arresting cells in G1 and represses expression of CLN1 and CLN2. Mutants with reduced G1 cyclin-Cdc28 activity are hypersensitive to AZC-induced proliferation arrest. Expression of the hyperstable Cln3–2 protein prevents G1 arrest upon AZC treatment and temperature up-shift. Finally, we find that the EXA3–1 mutation, encoding a defective HSF, prevents efficient G1 arrest in response to both temperature up-shift and AZC treatment. We conclude that nontoxic levels of misfolded proteins (induced by AZC treatment or by high temperature) selectively activate HSF, which is required for subsequent G1 arrest.
Resumo:
The infected cell protein no. 0 (ICP0), the product of the alpha 0 gene, and an important herpes simplex virus 1 regulatory protein is encoded by three exons. We report that intron 1 forms a family of four stable nonpolyadenylylated cytoplasmic RNAs sharing a common 5' end but differing in 3' ends. The 5' and 3' ends correspond to the accepted splice donor and four splice acceptor sites within the mapped intron domain. The most distant splice acceptor site yields the mRNA encoding the 775-aa protein known as ICP0. The mRNAs resulting from the use of alternative splice acceptor sites were also present in the cytoplasm of infected cells and would be predicted to encode proteins of 152 (ICP0-B), 87 (ICP0-C), and 90 (ICP0-D) amino acids, respectively. Both the stability of the alpha 0 mRNA and the utilization of at least one splice acceptor site was regulated by ICP22 and or US1.5 protein inasmuch as cells infected with a mutant from which these genes had been deleted accumulated smaller amounts of alpha 0 mRNA than would be predicted from the amounts of accumulated intron RNAs. In addition, one splice acceptor site was at best underutilized. These results indicate that both the splicing pattern and longevity of alpha 0 mRNA are regulated. These and other recent examples indicate that herpes simplex virus 1 regulates its own gene expression and that of the infected cells through control of mRNA splicing and longevity.
Resumo:
Voltage-gated K+ channels are important modulators of the cardiac action potential. However, the correlation of endogenous myocyte currents with K+ channels cloned from human heart is complicated by the possibility that heterotetrameric alpha-subunit combinations and function-altering beta subunits exist in native tissue. Therefore, a variety of subunit interactions may generate cardiac K+ channel diversity. We report here the cloning of a voltage-gated K+ channel beta subunit, hKv beta 3, from adult human left ventricle that shows 84% and 74% amino acid sequence identity with the previously cloned rat Kv beta 1 and Kv beta 2 subunits, respectively. Together these three Kv beta subunits share > 82% identity in the carboxyl-terminal 329 aa and show low identity in the amino-terminal 79 aa. RNA analysis indicated that hKv beta 3 message is 2-fold more abundant in human ventricle than in atrium and is expressed in both healthy and diseased human hearts. Coinjection of hKv beta 3 with a human cardiac delayed rectifier, hKv1.5, in Xenopus oocytes increased inactivation, induced an 18-mV hyperpolarizing shift in the activation curve, and slowed deactivation (tau = 8.0 msec vs. 35.4 msec at -50 mV). hKv beta 3 was localized to human chromosome 3 by using a human/rodent cell hybrid mapping panel. These data confirm the presence of functionally important K+ channel beta subunits in human heart and indicate that beta-subunit composition must be accounted for when comparing cloned channels with endogenous cardiac currents.
Resumo:
The present study was designed to determine the magnitude of the relationship between amount, frequency, and length of shift work completed by female transportation employees and the number, degree, and extent of problems related to physical, menstrual and psychological health including depression. It was hypothesized that workers that are employed in areas such as transportation who are working shift work on a regular basis place themselves at higher risk for developing health or psychosocial related effects. These health related outcomes can have a profound impact on an employee’s job performance, daily functioning, and personal life. The present study sought to understand the potential relationship between working shift work and higher disturbances to the bodies’ natural functioning. The present study has the potential for explaining new ways to decrease the risk factors for those working shift work by contributing to the overall understanding of this multifaceted relationship. This study has many important findings and implications. This study has implications for explaining that the effects of disturbances to the circadian rhythm as a result of certain shift work schedules can result in ill-related health effects. Additionally, this study sought to challenge limitations to current research that has been conducted on the topic as the majority of studies have been performed on men. The overall purpose of the study was to gain a better understanding of the negative effects of shift work on females working within the transportation industry. This study sought to explain the health implications specifically for female workers as fewer studies have been conducted with gender as a main effect in the analysis. The present study suggests that due to the circadian rhythm controlling hormone secretion within the body, disturbances to its natural rhythm can have additional effects on female cycles such as menstruation. Overall, this study offers implications for further research on females working shift work and highlights the continued importance for further exploration into recent developments. These implications have the potential to further our current understanding of the relationship between shift work and ill-health effects, particularly the factors that women face.