905 resultados para sensory nerve conduction
Resumo:
The motor points of the skeletal muscles, mainly of interest to anatomists and physiologists, have recently attracted much attention from researchers in the field of functional electrical stimulation. The muscle motor point has been defined as the entry point of the motor nerve branch into the epimysium of the muscle belly. Anatomists have pointed out that many muscles in the limbs have multiple motor points. Knowledge of the location of nerve branches and terminal nerve entry points facilitates the exact insertion and the suitable selection of the number of electrodes required for each muscle for functional electrical stimulation. The present work therefore aimed to describe the number, location, and distribution of motor points in the human forearm muscles to obtain optimal hand function in many clinical situations. Twenty three adult human cadaveric forearms were dissected. The numbers of primary nerves and motor points for each muscle were tabulated. The mean numbers and the standard deviation were calculated and grouped in tables. Data analyses were performed with the use of a statistical analysis package (SPSS 13.0). The proximal third of the muscle was the usual part of the muscle that received the motor points. Most of the forearm muscles were innervated from the lateral side and deep surface of the muscle. The information in this study may also be usefully applied in selective denervation procedures to balance muscles in spastic upper limbs. Copyright © 2007 Via Medica.
Resumo:
OBJECTIVE: To assess the effectiveness of n-butyl-2-cyanoacrylate glue compared with microsuturing technique in peripheral nerve reanastomosis in rats.
STUDY DESIGN: Fourteen young adult white rats were used. Bilateral sciatic neurotomies were performed in 12 of them and then reanastomosed with 3 epineural microsutures in the right side (study group G1) and with n-butyl-2-cyanoacrylate glue in the left side (study group G2). On the remaining 2 rats (control group G3), sham surgery was done on both sides. Biopsies were harvested 12 weeks after surgery and examined under light microscope using Osmic acid stains. The number of nerve fibers was counted in the distal and proximal nerve segments, and the results were analyzed and compared in all groups.
RESULTS: Adequate regeneration with no anastomotic ruptures was seen 12 weeks after surgery in G1 and G2. The histomorphometric assessment showed no statistically significant difference (P = .960) in the neurotization index of G1 (89.01%) compared with G2 (88.97%). There was a significant (P = .001) reduction in the mean number of axon counts distal to the repair in G1 (271.3) and G2 (272.8) compared with that of the proximal segments of each study group (304.6 and 303, respectively, as well as to that of G3 (348.5).
CONCLUSION: Both n-butyl-2-cyanoacrylate adhesive and 3-microsuture techniques showed comparable neurotization indices and were equally adequate to stabilize the nerve during regeneration period.
Resumo:
A precise knowledge of the sources of the arterial and neural supply of the sternohyoid (SH), sternothyroid (STM), and superior belly of omohyoid (OM) is of value to surgeons using the infrahyoid muscles in reconstruction procedures of the head and neck. This study was designed to define the anatomical bases of the variable sources of the arterial and neural supply of these muscles. Fourteen cadavers were unilaterally dissected in the neck region, and the arterial pedicles of these muscles were followed and accurate measurements were taken. For the SH, two arterial pedicles (superior and inferior) originated from the superior thyroid artery ST and supplied the muscle in 57.1% of cases. The inferior pedicle was absent in 42.9% of cases. As regards the STM, one arterial pedicle from the ST supplied its upper end by multiple branches in 57.1% of cases. In 14.3% of cases, branches from the inferior thyroid artery (IT) supplied the STM in addition to its supply from the ST. As regards the OM, two arterial pedicles originated from the ST and supplied its upper and lower ends in 57.1% of cases. The main artery from the ST to the superior belly of OM entered at its superior portion. The ansa cervicalis (AC) innervated the infrahyoid muscles. SH usually had a double nerve supply. In 57.1% of cases, its superior part was innervated by the nerve to the superior belly of OM. Its inferior part received branches from the AC. In 35.7% of cases, its superior part received direct branches from the AC. As regards the STM, in (71.4%) of cases, a common trunk arose from the loop and supplied the inferior part of both the SH and STM. The nerve supply to the superior belly of OM originated from the AC below the loop in 64.3% of cases. These data will be useful for preserving the neuro-vascular supply of the infrahyoid muscles during flap preparation.
Resumo:
The measurement and representation of the electrical activity of muscles [electromyography (EMG)] have a long history from the Victorian Era until today. Currently, EMG has uses both as a research tool, in noninvasively recording muscle activation, and clinically in the diagnosis and assessment of nerve and muscle disease and injury as well as in assessing the recovery of neuromuscular function after nerve damage. In the present report, we describe the use of a basic EMG setup in our teaching laboratories to demonstrate some of these current applications. Our practical also illustrates some fundamental physiological and structural properties of nerves and muscles. Learning activities include 1) displaying the recruitment of muscle fibers with increasing force development; 2) the measurement of conduction velocity of motor nerves; 3) the assessment of reflex delay and demonstration of Jendrassik's maneuver; and 4) a Hoffman reflex experiment that illustrates the composition of mixed nerves and the differential excitability thresholds of fibers within the same nerve, thus aiding an understanding of the reflex nature of muscle control. We can set up the classes at various levels of inquiry depending on the needs/professional requirements of the class. The results can then provide an ideal platform for a discovery learning session/tutorial on how the central nervous system controls muscles, giving insights on how supraspinal control interacts with reflexes to give smooth, precise muscular activation.
Resumo:
Adverse conditions prenatally increase the risk of cardiovascular disease, including hypertension. Chronic hypoxia in utero (CHU) causes endothelial dysfunction, but whether sympathetic vasoconstrictor nerve functioning is altered is unknown. We, therefore, compared in male CHU and control (N) rats muscle sympathetic nerve activity, vascular sympathetic innervation density, and mechanisms of sympathetic vasoconstriction. In young (Y)-CHU and Y-N rats (≈3 months), baseline arterial blood pressure was similar. However, tonic muscle sympathetic nerve activity recorded focally from arterial vessels of spinotrapezius muscle had higher mean frequency in Y-CHU than in Y-N rats (0.56±0.075 versus 0.33±0.036 Hz), and the proportions of single units with high instantaneous frequencies (1–5 and 6–10 Hz) being greater in Y-CHU rats. Sympathetic innervation density of tibial arteries was ≈50% greater in Y-CHU than in Y-N rats. Increases in femoral vascular resistance evoked by sympathetic stimulation at low frequency (2 Hz for 2 minutes) and bursts at 20 Hz were substantially smaller in Y-CHU than in Y-N rats. In Y-N only, the neuropeptide Y Y1-receptor antagonist BIBP3226 attenuated these responses. By contrast, baseline arterial blood pressure was higher in middle-aged (M)-CHU than in M-N rats (≈9 months; 139±3 versus 126±3 mmHg, respectively). BIBP3226 had no effect on femoral vascular resistance increases evoked by 2 Hz or 20 Hz bursts in M-N or M-CHU rats. These results indicate that fetal programming induced by prenatal hypoxia causes an increase in centrally generated muscle sympathetic nerve activity in youth and hypertension by middle age. This is associated with blunting of sympathetically evoked vasoconstriction and its neuropeptide Y component that may reflect premature vascular aging and contribute to increased risk of cardiovascular disease
Resumo:
Two mechanisms of conduction were identified from temperature dependent (120 K-340 K) DC electrical resistivity measurements of composites of poly(c-caprolactone) (PCL) and multi-walled carbon nanotubes (MWCNTs). Activation of variable range hopping (VRH) occurred at lower temperatures than that for temperature fluctuation induced tunneling (TFIT). Experimental data was in good agreement with the VRH model in contrast to the TFIT model, where broadening of tunnel junctions and increasing electrical resistivity at T > T-g is a consequence of a large difference in the coefficients of thermal expansion of PCL and MWCNTs. A numerical model was developed to explain this behavior accounting for a thermal expansion effect by supposing the large increase in electrical resistivity corresponds to the larger relative deformation due to thermal expansion associated with disintegration of the conductive MWCNT network. MWCNTs had a significant nucleating effect on PCL resulting in increased PCL crystallinity and an electrically insulating layer between MWCNTs. The onset of rheological percolation at similar to 0.18 vol% MWCNTs was clearly evident as storage modulus, G' and complex viscosity, vertical bar eta*vertical bar increased by several orders of magnitude. From Cole-Cole and Van Gurp-Palmen plots, and extraction of crossover points (G(c)) from overlaying plots of G' and G '' as a function of frequency, the onset of rheological percolation at 0.18 vol% MWCNTs was confirmed, a similar MWCNT loading to that determined for electrical percolation.
Resumo:
Phalloidin fluorescence technique, enzyme cytochemistry and immunocytochemistry in conjunction with confocal scanning laser microscopy were used for the first time to describe the nervous and muscle systems of the viviparous monogenean parasite, Gyrodactylus rysavyi inhabiting the gills and skin of the Nile catfish Clarias gariepinus. The body wall muscles are composed of an outer layer of circular fibres, an intermediate layer of paired longitudinal fibres and an inner layer of well-spaced bands of diagonal fibres arranged in two crossed directions. The musculature of the pharynx, intestine, reproductive tract and the most prominent muscles of the haptor were also described. Two characteristic muscular pads were found lying in the anterior region of the haptor in close contact with the hamuli. To each one of these pads, a group of ventral extrinsic muscles was connected. The role of this ventral extrinsic muscle in the body movement was discussed. The mechanism operating the marginal hooklets was also discussed. The central nervous system (CNS) consists of paired cerebral ganglia from which three pairs of longitudinal ventral, lateral and dorsal nerve cords arise. The nerve cords are connected at intervals by many transverse connectives. The CNS is better developed ventrally than dorsally or laterally and it has the highest reactivity for all neuroactive substances examined. Both the central and the peripheral nervous system (PNS) are bilaterally symmetrical. Structural and functional correlates of the neuromusculature of the pharynx, haptor and reproductive tracts were explained. The results implicated acetylcholine, FMRFamide-related peptides (FaRPs) and serotonin in sensory and motor function. The results were compared with those of the monogeneans Macrogyrodactylus clarii and M. congolensis inhabiting the gills and skin respectively of the same host fish C. gariepinus.
Resumo:
Phalloidin fluorescence technique, enzyme cytochemistry and immunocytochemistry, in conjunction with confocal scanning laser microscopy, were used to describe the neuromusculature of the monogenean skin parasite Macrogyrodactylus congolensis from the Nile catfish Clarias gariepinus. The body wall muscles are composed of an outer layer of compactly arranged circular fibres, an intermediate layer of paired longitudinal fibres and an inner layer of well-spaced bands of diagonal fibres arranged in two crossed directions. The central nervous system consists of paired cerebral ganglia from which three pairs of longitudinal ventral, lateral and dorsal nerve cords arise. The nerve cords are connected at intervals by many transverse connectives. Both central and peripheral nervous systems are bilaterally symmetrical and better developed ventrally than laterally and dorsally. Structural and functional correlates of the neuromusculature of the pharynx, haptor and reproductive tracts were examined. Results implicate acetylcholine, FMRFamide-related peptides and serotonin in sensory and motor function. The results were compared with those of Macrogyrodactylus clarii, a gill parasite of the same host fish C. gariepinus.
Resumo:
Phalloidin fluorescence technique, enzyme cytochemistry and immunocytochemistry in conjunction with confocal scanning laser microscopy have been used for the first time to describe the nervous and muscle systems of the viviparous monogenean gill parasite, Macrogyrodactylus clarii. The gross spatial arrangement of muscle and associated cholinergic, peptidergic and aminergic innervations has been examined. The central nervous system (CNS) consists of paired cerebral ganglia from which emanate three pairs of longitudinal ventral, lateral and dorsal nerve cords, connected at intervals by transverse connectives. The CNS is better developed ventrally than dorsally or laterally, and has the strongest reactivity for all neuroactive substances examined. Structural and functional correlates of the neuromusculature of the pharynx, haptor and reproductive tracts have been examined. Results implicate acetylcholine, FMRFamide-related peptides (FaRPs) and serotonin in sensory and motor function in this monogenean, although confirmatory physiological data are obviously required.