922 resultados para selection model
Resumo:
National Highway Traffic Safety Administration, Office of Vehicle Safety Compliance, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Office of Vehicle Safety Compliance, Washington, D.C.
Resumo:
Responses of stomatal conductance (g(s)) and net photosynthesis (A) to changes in soil water availability, photosynthetic photon flux density (Q), air temperature (1) and leaf-to-air vapour pressure deficit (D) were investigated in 4-year-old trees of a dry inland provenance of Eucalyptus argophloia Blakely, and two dry inland provenances (Coominglah and Hungry Hills) and a humid coastal provenance (Wolvi) of Eucalyptus cloeziana F. Muell. between April 2001 and April 2002 in southeast Queensland, Australia. There were minimal differences in A, g, and water relations variables among the coastal and inland provenances of E. cloeziana but large differences between E. argophloia and E. cloeziana. E. argophloia and to a lesser extent the Hungry Hills (inland) provenance of E. cloeziana maintained relatively higher pre-dawn water potential (psi(pd)) during the dry season suggesting possible access to water at depth. Simple phenomenological models of stomatal conductance as a function of Q, T and D explained 60% of variation in gs in E. cloeziana and more than 75% in E. argophloia, when seasonal effect was incorporated in the model. A Ball-Berry model for net photosynthesis explained between 70 and 80% of observed variation in A in both species. These results have implications in matching the dry and humid provenances of E. cloeziana and E. argophloia to suitable sites in subtropical environments. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Plant breeders use many different breeding methods to develop superior cultivars. However, it is difficult, cumbersome, and expensive to evaluate the performance of a breeding method or to compare the efficiencies of different breeding methods within an ongoing breeding program. To facilitate comparisons, we developed a QU-GENE module called QuCim that can simulate a large number of breeding strategies for self-pollinated species. The wheat breeding strategy Selected Bulk used by CIMMYT's wheat breeding program was defined in QuCim as an example of how this is done. This selection method was simulated in QuCim to investigate the effects of deviations from the additive genetic model, in the form of dominance and epistasis, on selection outcomes. The simulation results indicate that the partial dominance model does not greatly influence genetic advance compared with the pure additive model. Genetic advance in genetic systems with overdominance and epistasis are slower than when gene effects are purely additive or partially dominant. The additive gene effect is an appropriate indicator of the change in gene frequency following selection when epistasis is absent. In the absence of epistasis, the additive variance decreases rapidly with selection. However, after several cycles of selection it remains relatively fixed when epistasis is present. The variance from partial dominance is relatively small and therefore hard to detect by the covariance among half sibs and the covariance among full sibs. The dominance variance from the overdominance model can be identified successfully, but it does not change significantly, which confirms that overdominance cannot be utilized by an inbred breeding program. QuCim is an effective tool to compare selection strategies and to validate some theories in quantitative genetics.
Resumo:
A model was developed in dogs to determine the impact of oral enrofloxacin administration on the indigenous coliform population in the gastrointestinal tract and subsequent disposition to colonization by a strain of multidrug-resistant Escherichia coli (MDREC). Dogs given a daily oral dose of 5 mg enrofloxacin kg(-1) for 21 consecutive days showed a significant decline in faecal coliforms to levels below detectable limits by 72 In of administration. Subsequently, faecal coliforms remained suppressed throughout the period of enrofloxacin dosing. Upon termination of antibiotic administration, the number of excreted faecal coliforms slowly returned over an 8-day period, to levels comparable to those seen prior to antibiotic treatment. Enrofloxacin-treated dogs were more effectively colonized by MDREC, evidenced by a significantly increased count of MDREC in the faeces (7.1 +/- 1.5 log(10) g(-1)) compared with non-antibiotic-treated dogs (5.2 +/- 1.2; P = 0.003). Furthermore, antibiotic treatment also sustained a significantly longer period of MDREC excretion in the faeces (26.8 +/- 10.5 days) compared with animals not treated with enrofloxacin (8.5 +/- 5.4 days; P = 0.0215). These results confirm the importance of sustained delivery of an antimicrobial agent to maintain and expand the colonization potential of drug-resistant bacteria in vivo, achieved in part by reducing the competing commensal coliforms in the gastrointestinal tract to below detectable levels in the faeces. Without in vivo antimicrobial selection pressure, commensal coliforms dominated the gastrointestinal tract at the expense of the MDREC population. Conceivably, the model developed could be used to test the efficacy of novel non-antibiotic strategies aimed at monitoring and controlling gastrointestinal colonization by multidrug-resistant members of the Enterobacteriaceae that cause nosocomial infections.
Resumo:
When studying genotype X environment interaction in multi-environment trials, plant breeders and geneticists often consider one of the effects, environments or genotypes, to be fixed and the other to be random. However, there are two main formulations for variance component estimation for the mixed model situation, referred to as the unconstrained-parameters (UP) and constrained-parameters (CP) formulations. These formulations give different estimates of genetic correlation and heritability as well as different tests of significance for the random effects factor. The definition of main effects and interactions and the consequences of such definitions should be clearly understood, and the selected formulation should be consistent for both fixed and random effects. A discussion of the practical outcomes of using the two formulations in the analysis of balanced data from multi-environment trials is presented. It is recommended that the CP formulation be used because of the meaning of its parameters and the corresponding variance components. When managed (fixed) environments are considered, users will have more confidence in prediction for them but will not be overconfident in prediction in the target (random) environments. Genetic gain (predicted response to selection in the target environments from the managed environments) is independent of formulation.
Resumo:
An investigation was conducted to evaluate the impact of experimental designs and spatial analyses (single-trial models) of the response to selection for grain yield in the northern grains region of Australia (Queensland and northern New South Wales). Two sets of multi-environment experiments were considered. One set, based on 33 trials conducted from 1994 to 1996, was used to represent the testing system of the wheat breeding program and is referred to as the multi-environment trial (MET). The second set, based on 47 trials conducted from 1986 to 1993, sampled a more diverse set of years and management regimes and was used to represent the target population of environments (TPE). There were 18 genotypes in common between the MET and TPE sets of trials. From indirect selection theory, the phenotypic correlation coefficient between the MET and TPE single-trial adjusted genotype means [r(p(MT))] was used to determine the effect of the single-trial model on the expected indirect response to selection for grain yield in the TPE based on selection in the MET. Five single-trial models were considered: randomised complete block (RCB), incomplete block (IB), spatial analysis (SS), spatial analysis with a measurement error (SSM) and a combination of spatial analysis and experimental design information to identify the preferred (PF) model. Bootstrap-resampling methodology was used to construct multiple MET data sets, ranging in size from 2 to 20 environments per MET sample. The size and environmental composition of the MET and the single-trial model influenced the r(p(MT)). On average, the PF model resulted in a higher r(p(MT)) than the IB, SS and SSM models, which were in turn superior to the RCB model for MET sizes based on fewer than ten environments. For METs based on ten or more environments, the r(p(MT)) was similar for all single-trial models.
A simulation model of cereal-legume intercropping systems for semi-arid regions I. Model development
Resumo:
Cereal-legume intercropping plays an important role in subsistence food production in developing countries, especially in situations of limited water resources. Crop simulation can be used to assess risk for intercrop productivity over time and space. In this study, a simple model for intercropping was developed for cereal and legume growth and yield, under semi-arid conditions. The model is based on radiation interception and use, and incorporates a water stress factor. Total dry matter and yield are functions of photosynthetically active radiation (PAR), the fraction of radiation intercepted and radiation use efficiency (RUE). One of two PAR sub-models was used to estimate PAR from solar radiation; either PAR is 50% of solar radiation or the ratio of PAR to solar radiation (PAR/SR) is a function of the clearness index (K-T). The fraction of radiation intercepted was calculated either based on Beer's Law with crop extinction coefficients (K) from field experiments or from previous reports. RUE was calculated as a function of available soil water to a depth of 900 mm (ASW). Either the soil water balance method or the decay curve approach was used to determine ASW. Thus, two alternatives for each of three factors, i.e., PAR/SR, K and ASW, were considered, giving eight possible models (2 methods x 3 factors). The model calibration and validation were carried out with maize-bean intercropping systems using data collected in a semi-arid region (Bloemfontein, Free State, South Africa) during seven growing seasons (1996/1997-2002/2003). The combination of PAR estimated from the clearness index, a crop extinction coefficient from the field experiment and the decay curve model gave the most reasonable and acceptable result. The intercrop model developed in this study is simple, so this modelling approach can be employed to develop other cereal-legume intercrop models for semi-arid regions. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Smallholder farmers in Africa practice traditional cropping techniques such as intercropping. Intercropping is thought to offer higher productivity and resource milisation than sole cropping. In this study, risk associated with maize-bean intercropping was evaluated by quantifying long-term yield in both intercropping and sole cropping in a semi-arid region of South Africa (Bloemfontein, Free State) with reference to rainfall variability. The crop simulation model was run with different cultural practices (planting date and plant density) for 52 summer crop growing seasons (1950/1951-2001/2002). Eighty-one scenarios, consisted of three levels of initial soil water, planting date, maize population, and bean population, were simulated. From the simulation outputs, the total land equivalent ratio (LER) was greater than one. The intercrop (equivalent to sole maize) had greater energy value (EV) than sole beans, and the intercrop (equivalent to sole beans) had greater monetary value (MV) than sole maize. From these results, it can be concluded that maize-bean intercropping is advantageous for this semi-arid region. Soil water at planting was the most important factor of all scenario factors, followed by planting date. Irrigation application at planting, November/December planting and high plant density of maize for EV and beans for MV can be one of the most effective cultural practices in the study region. With regard to rainfall variability, seasonal (October-April) rainfall positively affected EV and MV, but not LER. There was more intercrop production in La Nina years than in El Nino years. Thus, better cultural practices may be selected to maximize maize-bean intercrop yields for specific seasons in the semi-arid region based on the global seasonal outlook. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Mating preferences are common in natural populations, and their divergence among populations is considered an important source of reproductive isolation during speciation. Although mechanisms for the divergence of mating preferences have received substantial theoretical treatment, complementary experimental tests are lacking. We conducted a laboratory evolution experiment, using the fruit fly Drosophila serrata, to explore the role of divergent selection between environments in the evolution of female mating preferences. Replicate populations of D. serrata were derived from a common ancestor and propagated in one of three resource environments: two novel environments and the ancestral laboratory environment. Adaptation to both novel environments involved changes in cuticular hydrocarbons, traits that predict mating success in these populations. Furthermore, female mating preferences for these cuticular hydrocarbons also diverged among populations. A component of this divergence occurred among treatment environments, accounting for at least 17.4% of the among- population divergence in linear mating preferences and 17.2% of the among-population divergence in nonlinear mating preferences. The divergence of mating preferences in correlation with environment is consistent with the classic by- product model of speciation in which premating isolation evolves as a side effect of divergent selection adapting populations to their different environments.
Resumo:
Document classification is a supervised machine learning process, where predefined category labels are assigned to documents based on the hypothesis derived from training set of labelled documents. Documents cannot be directly interpreted by a computer system unless they have been modelled as a collection of computable features. Rogati and Yang [M. Rogati and Y. Yang, Resource selection for domain-specific cross-lingual IR, in SIGIR 2004: Proceedings of the 27th annual international conference on Research and Development in Information Retrieval, ACM Press, Sheffied: United Kingdom, pp. 154-161.] pointed out that the effectiveness of document classification system may vary in different domains. This implies that the quality of document model contributes to the effectiveness of document classification. Conventionally, model evaluation is accomplished by comparing the effectiveness scores of classifiers on model candidates. However, this kind of evaluation methods may encounter either under-fitting or over-fitting problems, because the effectiveness scores are restricted by the learning capacities of classifiers. We propose a model fitness evaluation method to determine whether a model is sufficient to distinguish positive and negative instances while still competent to provide satisfactory effectiveness with a small feature subset. Our experiments demonstrated how the fitness of models are assessed. The results of our work contribute to the researches of feature selection, dimensionality reduction and document classification.
Resumo:
The ‘leading coordinate’ approach to computing an approximate reaction pathway, with subsequent determination of the true minimum energy profile, is applied to a two-proton chain transfer model based on the chromophore and its surrounding moieties within the green fluorescent protein (GFP). Using an ab initio quantum chemical method, a number of different relaxed energy profiles are found for several plausible guesses at leading coordinates. The results obtained for different trial leading coordinates are rationalized through the calculation of a two-dimensional relaxed potential energy surface (PES) for the system. Analysis of the 2-D relaxed PES reveals that two of the trial pathways are entirely spurious, while two others contain useful information and can be used to furnish starting points for successful saddle-point searches. Implications for selection of trial leading coordinates in this class of proton chain transfer reactions are discussed, and a simple diagnostic function is proposed for revealing whether or not a relaxed pathway based on a trial leading coordinate is likely to furnish useful information.
Resumo:
Topological measures of large-scale complex networks are applied to a specific artificial regulatory network model created through a whole genome duplication and divergence mechanism. This class of networks share topological features with natural transcriptional regulatory networks. Specifically, these networks display scale-free and small-world topology and possess subgraph distributions similar to those of natural networks. Thus, the topologies inherent in natural networks may be in part due to their method of creation rather than being exclusively shaped by subsequent evolution under selection. The evolvability of the dynamics of these networks is also examined by evolving networks in simulation to obtain three simple types of output dynamics. The networks obtained from this process show a wide variety of topologies and numbers of genes indicating that it is relatively easy to evolve these classes of dynamics in this model. (c) 2006 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Racing algorithms have recently been proposed as a general-purpose method for performing model selection in machine teaming algorithms. In this paper, we present an empirical study of the Hoeffding racing algorithm for selecting the k parameter in a simple k-nearest neighbor classifier. Fifteen widely-used classification datasets from UCI are used and experiments conducted across different confidence levels for racing. The results reveal a significant amount of sensitivity of the k-nn classifier to its model parameter value. The Hoeffding racing algorithm also varies widely in its performance, in terms of the computational savings gained over an exhaustive evaluation. While in some cases the savings gained are quite small, the racing algorithm proved to be highly robust to the possibility of erroneously eliminating the optimal models. All results were strongly dependent on the datasets used.