999 resultados para samarium


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three distinct, spatially separated crustal terranes have been recognised in the Shackleton Range, East Antarctica: the Southern, Eastern and Northern Terranes. Mafic gneisses from the Southern Terrane provide geochemical evidence for a within-plate, probably back-arc origin of their protoliths. A plume-distal ridge origin in an incipient ocean basin is the favoured interpretation for the emplacement site of these rocks at c. 1850 Ma, which, together with a few ocean island basalts, were subsequently incorporated into an accretionary continental arc/supra-subduction zone tectonic setting. Magmatic underplating resulted in partial melting of the lower crust, which caused high-temperature granulite-facies metamorphism in the Southern Terrane at c. 1710-1680 Ma. Mafic and felsic gneisses there are characterised by isotopically depleted, positive Nd and Hf initials and model ages between 2100 and 2000 Ma. They may be explained as juvenile additions to the crust towards the end of the Palaeoproterozoic. These juvenile rocks occur in a narrow, c. 150 km long E-W trending belt, inferred to trace a suture that is associated with a large Palaeoproterozoic accretionary orogenic system. The Southern Terrane contains many features that are similar to the Australo-Antarctic Mawson Continent and may be its furthermost extension into East Antarctica. The Eastern Terrane is characterised by metagranitoids that formed in a continental volcanic arc setting during a late Mesoproterozoic orogeny at c. 1060 Ma. Subsequently, the rocks experienced high-temperature metamorphism during Pan-African collisional tectonics at 600 Ma. Isotopically depleted zircon grains yielded Hf model ages of 1600-1400 Ma, which are identical to Nd model ages obtained from juvenile metagranitoids. Most likely, these rocks trace the suture related to the amalgamation of the Indo-Antarctic and West Gondwana continental blocks at ~600 Ma. The Eastern Terrane is interpreted as the southernmost extension of the Pan-African Mozambique/Maud Belt in East Antarctica and, based on Hf isotope data, may also represent a link to the Ellsworth-Whitmore Mountains block in West Antarctica and the Namaqua-Natal Province of southern Africa. Geochemical evidence indicates that the majority of the protoliths of the mafic gneisses in the Northern Terrane formed as oceanic island basalts in a within-plate setting. Subsequently the rocks were incorporated into a subduction zone environment and, finally, accreted to a continental margin during Pan-African collisional tectonics. Felsic gneisses there provide evidence for a within-plate and volcanic arc/collisional origin. Emplacement of granitoids occurred at c. 530 Ma and high-temperature, high-pressure metamorphism took place at 510-500 Ma. Enriched Hf and Nd initials and Palaeoproterozoic model ages for most samples indicate that no juvenile material was added to the crust of the Northern Terrane during the Pan-African Orogeny but recycling of older crust or mixing of crustal components of different age must have occurred. Isotopically depleted mafic gneisses, which are spatially associated with eclogite-facies pyroxenites, yielded late Mesoproterozoic Nd model ages. These rocks occur in a narrow, at least 100 km long, E-W trending belt that separates alkaline ocean island metabasalts and within-plate metagranitoids from volcanic arc metabasalts and volcanic arc/syn-collisional metagranitoids in the Northern Terrane. This belt is interpreted to trace the late Neoproterozoic/early Cambrian Pan-African collisional suture between the Australo-Antarctic and the combined Indo-Antarctic/West Gondwana continental blocks that formed during the final amalgamation of Gondwana.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Because of a close relationship between detrital flux variations and magnetic susceptibility (MS) flux (MS cm**3 of bulk sediment multiplied by the linear sedimentation rate) variations in the southeast Indian basin of the southern ocean, MS flux profiles have been used to examine the spatial and temporal detrital flux changes in this basin during the last climatic cycle. Results indicate a general increase in detrital material input during the coldest periods, suggesting a widespread phenomenon, at least on the basin scale. Mineralogical data, geochemical data, and 87Sr/86Sr isotopic ratios have been used to determine the origin and transport mechanisms responsible for increased detrital flux during glacial periods. Mineralogical and geochemical data show that these glacial 'highs' are due to increases in both Kerguelen-Crozet volcanic and Antarctic detrital inputs. The 87Sr/86Sr isotopic composition of the >45-µm fraction indicates that the Kerguelen-Crozet province contributes to at least 50% of the coarse particule input to the west. This contribution decreases eastward to reach less than 10%. These tracers clearly indicate that the Crozet-Kerguelen province was a major source region of detrital in the western part of the basin during glacial times. In contrast, material of Antarctic origin is well represented in the whole basin (fine and coarse fractions). Because of the minor amount of coarse particles in the sediments, volcanic particles from Kerguelen and crustal particles from Antarctica have most probably been transported by the Antarctic bottom water current and/or the Circumpolar deepwater current during glacial periods as is the case today. Nevertheless, the presence of coarse particles even in low amount suggests also a transport by ice rafting (sea-ice and icebergs), originated from both Kerguelen and Antarctic sources. However, the relative importance of both hydrographic and ice-rafting modes of transport cannot be identified accurately with our data. During low sea level stands (glacial maximum periods), increasing instability and erosion of the continental platform and shallow plateaus could have resulted in a more efficient transfer of crustal and volcano-detrital material to the Southeast Indian basin. At the same time, extension of the grounded ice shelves over the continental margins and increase in the erosion rate of the Antarctic ice sheet could have induced a greater input of ice rafted detritus (IRD) to southern ocean basins. Enhancement of the circumpolar deepwater current strength might have also carried a more important flux of detrital material from Kerguelen. However, an increase in the bottom water flow is not necessarily required.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leg 65 of the Deep Sea Drilling Project successfully recovered basalts from four sites in the mouth of the Gulf of California, thus completing a transect begun during Leg 64 from the continental margin of Baja California to the east side of the East Pacific Rise (EPR). Sixty-three whole-rock samples from Sites 482, 483, and 485 have been analyzed by X-ray fluorescence techniques, and a further eleven samples by instrumental neutron-activation techniques, in order to assess magma variability within and between sites. Although the major element compositions and absolute hygromagmatophile (HYG) element abundances are quite variable, all of the basalts are subalkaline tholeiites exhibiting strong more-HYG element (e.g., Rb, La, Nb, Ta) depletion (LaN/YbN ~ 0.4; Nb/Zr ~ 0.02; Ba/Zr ~ 0.23; Th/Hf ~ 0.05). These ratios, together with La/Ta ratios of 20 and Th/Ta ratios of 1.25, demonstrate that the Leg 65 basalts resemble the depleted "N-type" ocean ridge basalts recovered from the Mid-Atlantic Ridge (MAR) at 22 °N and other sections of the EPR. Zr/Ti, Zr/Y, and La/Yb ratios increase with increasing fractionation. It is clear that the basalts recovered from Sites 482, 483, and 485 were all derived from a compositionally similar source and that the compositional differences observed between lithological units can be explained by varying degrees of open system fractional crystallization (magma mixing) in subridge magma chambers. The basaltic rocks recovered from Site 474 near the margin of Baja California, and Sites 477, 478, and 481 in the Guaymas Basin, all drilled during Leg 64, have consistently higher Th/Hf, La/Sm, Zr/Ti, and Zr/Y ratios and higher absolute Sr contents than the Leg 65 basalts. While some of these variations may be explained by different conditions of partial melting, it is considered more likely that the mantle source underlying the Guaymas Basin is chemically distinct from that feeding the EPR at the mouth of the Gulf. These source variations probably reflect the complex tectonic setting of the Gulf of California, the magmas formed at the inception of spreading and in the central part of the Gulf containing a minor but significant component of sub-continental (calc-alkaline) material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports results of geological studies carried out during two marine expeditions of R/VAkademik M.A. Lavrent'ev (Cruises 37 and 41) in 2005 and 2006 at the underwater Vityaz Ridge. Dredging has yielded various rocks from the basement and sedimentary cover of the ridge within three polygons. On the basis of radioisotope age determinations, petrochemical, and paleontological data all the rocks have been subdivided into the following complexes: volcanic rock of Paleocene, Eocene, Late Oligocene, Middle Miocene, and Pliocene-Pleistocene; volcanogenic-sedimentary rocks of Late Cretaceous - Early Paleocene, Paleogene (undifferentiated), Oligocene - Early Miocene, and Pliocene-Pleistocene. Determinations of age and chemical composition of the rocks have enabled to specify formation conditions of the complexes and to trace geological evolution of the Vityaz Ridge. Presence of young Pliocene-Pleistocene volcanites allows to conclude about the modern tectono-magmatic activity of the central part of the Pacific slope of the Kuril Islands.