995 resultados para route maintenance protocols
Resumo:
Perhaps the most difficult job of the ecotoxicologist is extrapolating data calculated from laboratory experiments with high precision and accuracy into the real world of highly-dynamics aquatic environments. The establishment of baseline laboratory toxicity testing data for individual compounds and ecologically important and field studies serve as a precursor to ecosystem level studies needed for ecological risk assessment. The first stage in the field portion of risk assessment is the determination of actual environmental concentrations of the contaminant being studied and matching those concentrations with laboratory toxicity tests. Risk estimates can be produced via risk quotients that would determine the probability that adverse effects may occur. In this first stage of risk assessment, environmental realism is often not achieved. This is due, in part, to the fact that single-species laboratory toxicity tests, while highly controlled, do not account for the complex interactions (Chemical, physical, and biological) that take place in the natural environment. By controlling as many variables in the laboratory as possible, an experiment can be produced in such a fashion that real effects from a compound can be determined for a particular test organism. This type of approach obviously makes comparison with real world data most difficult. Conversely, field oriented studies fall short in the interpretation of ecological risk assessment because of low statistical power, lack of adequate replicaiton, and the enormous amount of time and money needed to perform such studies. Unlike a controlled laboratory bioassay, many other stressors other than the chemical compound in question affect organisms in the environment. These stressors range from natural occurrences (such as changes in temperature, salinity, and community interactions) to other confounding anthropogenic inputs. Therefore, an improved aquatic toxicity test that will enhance environmental realism and increase the accuracy of future ecotoxicological risk assessments is needed.
Resumo:
Marine mammals, such as dolphins, can serve as key indicator species in coastal areas by reflecting the effects of natural and anthropogenic stressors. As such they are often considered sentinels of environmental and ecosystem health (Bossart 2006; Wells et al. 2004; Fair and Becker 2000). The bottlenose dolphin is an apex predator and a key component of many estuarine environments in the southeastern United States (Woodward-Clyde Consultants 1994; SCDNR 2005). Health assessments of dolphins are especially critical in areas where populations are depleted, show signs of epidemic disease and/or high mortality and/or where habitat is being altered or impacted by human activities. Recent assessments of environmental conditions in the Indian River Lagoon, Florida (IRL) and the estuarine waters surrounding Charleston, South Carolina (CHS) highlight the need for studies of the health of local bottlenose dolphins. While the condition of southeastern estuaries was rated as fair in the National Coastal Condition Report (U.S. EPA 2001), it was noted that the IRL was characterized by poorer than expected benthic communities, significant sediment toxicity and increased nutrient concentrations. Similarly, portions of the CHS estuary have sediment concentrations of aliphatic aromatic hydrocarbons, select inorganic metals, and some persistent pesticides far in excess of reported bioeffect levels (Hyland et al. 1998). Long-term trends in water quality monitoring and recent scientific research suggest that waste load assimilation, non-point source runoff impacts, contaminated sediments, and toxic pollutants are key issues in the CHS estuary system. Several ‘hot spots’ with high levels of heavy metals and organic compounds have been identified (Van Dolah et al. 2004). High concentrations of anthropogenic trace metals, polychlorinated biphenyls (PCB’s) and pesticides have been found in the sediments of Charleston Harbor, as well as the Ashley and Cooper Rivers (Long et al. 1998). Two superfund sites are located within the CHS estuary and the key contaminants of concern associated with these sites are: polycyclic aromatic hydrocarbons (PAH), lead, chromium, copper, arsenic, zinc and dioxin. Concerns related to the overall health of IRL dolphins and dermatologic disease observed in many dolphins in the area (Bossart et al. 2003) initiated an investigation of potential factors which may have impacted dolphin health. From May-August 2001, 35 bottlenose dolphins died in the IRL during an unusual mortality event (MMC 2003). Many of these dolphins were diagnosed with a variety of skin lesions including proliferative ulcerative dermatitis due to protozoa and fungi, dolphin pox and a vesicular dermatopathy of unknown etiology (Bossart et al. 2003). Multiple species from fish to dolphins in the IRL system have exhibited skin lesions of various known and unknown etiologies (Kane et al. 2000; Bossart et al. 2003; Reif et al. 2006). On-going photo-identification (photo-ID) studies have documented skin diseases in IRL dolphins (Mazzoil et al. 2005). In addition, up to 70% of green sea turtles in the IRL exhibit fibropapillomas, with the highest rates of occurrence being seen in turtles from the southern IRL (Hirama 2001).
Resumo:
Several small scleractinian coral colonies were collected from a remote reef and transferred [to] the Louisiana Universities Marine Center (LUMCON) for in vitro reproductive and larval studies. The species used here were Porites astreoides and Diploria strigosa. Colony size was ~20 cm in diameter. Colonies were brought to the surface by liftbag and stored in modified ice coolers. They were transported from Freeport, TX to Cocodrie, LA by truck for nearly 15 hours where field conditions were simulated in waiting aquaria. This document describes the techniques and equipment that were used, how to outfit such aquaria, proper handling techniques for coral colonies, and several eventualities that the mariculturist should be prepared for in undertaking this endeavor. It will hopefully prevent many mistakes from being made.
Resumo:
It is shown in the paper how robustness can be guaranteed for consensus protocols with heterogeneous dynamics in a scalable and decentralized way i.e. by each agent satisfying a test that does not require knowledge of the entire network. Random graph examples illustrate that the proposed certificates are not conservative for classes of large scale networks, despite the heterogeneity of the dynamics, which is a distinctive feature of this work. The conditions hold for symmetric protocols and more conservative stability conditions are given for general nonsymmetric interconnections. Nonlinear extensions in an IQC framework are finally discussed. Copyright © 2005 IFAC.
Resumo:
In reciprocal mutualism systems, the exploitation events by exploiters might disrupt the reciprocal mutualism, wherein one exploiter species might even exclude other coexisting exploiter species over an evolutionary time frame. What remains unclear is how such a community is maintained. Niche partitioning, or spatial heterogeneity among the mutualists and exploiters, is generally believed to enable stability within a mutualistic system. However, our examination of a reciprocal mutualism between a fig species (Ficus racemosa) and its pollinator wasp (Ceratosolen fusciceps) shows that spatial niche partitioning does not sufficiently prevent exploiters from overexploiting the common resource (i.e., the female flowers), because of the considerable niche overlap between the mutualists and exploiters. In response to an exploiter, our experiment shows that the fig can (1) abort syconia-containing flowers that have been galled by the exploiter, Apocryptophagus testacea, which oviposits before the pollinators do; and (2) retain syconia-containing flowers galled by Apocryptophagus mayri, which oviposit later than pollinators. However, as a result of (2), there is decreased development of adult non-pollinators or pollinator species in syconia that have not been sufficiently pollinated, but not aborted. Such discriminative abortion of figs or reduction in offspring development of exploiters while rewarding cooperative individuals with higher offspring development by the fig will increase the fitness of cooperative pollinating wasps, but decrease the fitness of exploiters. The fig fig wasp interactions are diffusively coevolved, a case in which fig wasps diversify their genotype, phenotype, or behavior as a result of competition between wasps, while figs diverge their strategies to facilitate the evolution of cooperative fig waps or lessen the detrimental behavior by associated fig wasps. In habitats or syconia that suffer overexploitation, discriminative abortion of figs or reduction in the offspring development of exploiters in syconia that are not or not sufficiently pollinated will decrease exploiter fitness and perhaps even drive the population of exploiters to local extinction, enabling the evolution and maintenance of cooperative pollinators through the movement between habitats or syconia (i.e., the metapopulations).
Resumo:
The cryopreservation of oocytes has been only marginally successful with any of the current protocols, including slow cooling, rapid cooling and vitrification. We wished to test the hypothesis that oocytes from a single mouse strain would freeze successfully by 1 of the 3 mentioned protocols. Unfertilized Kunming mouse oocytes obtained 14 h after PMSG/hCG administration were randomly assigned to be cryopreserved after slow cooling, ultra rapid cooling and vitrification. Oocytes were thawed by straws being placed into 37 degrees C water, and their morphological appearance and in vitro fertilization capability were compared with that of oocytes that had not undergone cryopreservation. Survival of oocytes was indicated by the absence of darkened ooplasm or by broken membranes or zona pellucida. Functional integrity was evaluated by the formation of a 2-cell embryo after IVF. Survival rate of slow cooled oocytes did not differ from that seen in vitrified oocytes (55.1 vs 65.9%) but was significantly lower in the rapidly cooled oocytes (24.2%; P<0.01). The results of NF of slow cooled and vitrified oocytes were similar to those of the control group (72 and 73 vs 77%; P>0.05). It appears that Kunming mouse oocytes can be successfully cryopreserved using the slow cooling method with 1,2-propanediol and vitrification, which contains both permeating and nonpermeating cryoprotectants. (C) 1997 by Elsevier Science Inc.
Resumo:
Memory is sensitive to the short-acting anesthetic (2,6-diisopropylphenol) propofol, but the underlying mechanism is little known. Here, we have examined the effects of propofol on synaptic plasticity in the CA1 region of the hippocampus of anesthetized rats. We found that low dose of propofol (20 mg/kg, i.p.) did not affect the basal transmission, but enhanced prominently the development of long-term depression (LTD) and impaired the maintenance of long-term potentiation (LTP). The impairment of LTP maintenance and enhancement of LTD development may contribute to propofol-induced deficits in memory following propofol anesthesia. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Many short-term studies have reported groups of black crested gibbons containing >= 2 adult females (Nomascus concolor). We report the stability of multifemale groups in this species over a period of 6 yr. Our focal group and 2 neighboring groups included 2 breeding females between March 2003 and June 2009. We also habituated 1 multifemale group to observers and present detailed information concerning their social relationships over a 9-mo observation period. We investigated interindividual distances and agonistic behavior among the 5 group members. The spatial relationship between the 3 adult members (1 male, 2 females) formed an equilateral triangle. A subadult male was peripheral to the focal group, while a juvenile male maintained a closer spatial relationship with the adult members. We observed little agonistic behavior among the adult members. The close spatial relationship and lack of high rates of agonistic behavior among females suggest that the benefits of living in a multifemale group were equal to or greater than the costs for both females, given their ecological and social circumstances. The focal group occupied a large home range that was likely to provide sufficient food sources for the 2 females and their offspring. Between March 2003 and June 2009, 1 adult female gave 2 births and the other one gave 1 birth. All individuals in the focal group survived to June 2009. A long-term comparative study focused on females living in multifemale groups and females living in pair-living groups would provide insight into understanding the evolutionary mechanisms of the social system in gibbons.