1000 resultados para resistencia a la compresión
Resumo:
Como contribución del estudio de medios heterogéneos, esta tesis recoge el trabajo llevado a cabo sobre modelado teórico y simulación del estudio de las propiedades ópticas de la piel y del agua del mar, como ejemplos paradigmáticos de medios heterogéneos. Se ha tomado como punto de partida el estudio de la propagación de la radiación óptica, más concretamente de la radiación láser, en un tejido biológico. La importancia de la caracterización óptica de un tejido es fundamental para manejar la interacción radiación-tejido que permite tanto el diagnóstico como la terapéutica de enfermedades y/o de disfunciones en las Ciencias de la Salud. Sin olvidar el objetivo de ofrecer una metodología de estudio, con un «enfoque ingenieril», de las propiedades ópticas en un medio heterogéneo, que no tiene por qué ser exclusivamente el tejido biológico. Como consecuencia de lo anterior y de la importancia que tiene el agua dentro de los tejidos biológicos se decide estudiar en otro capítulo las propiedades ópticas del agua dentro de un entorno heterogéneo como es el agua del mar. La selección del agua del mar, como objeto de estudio adicional, es motivada, principalmente, porque se trata de un sistema heterogéneo fácilmente descriptible en cada uno de sus elementos y permite evaluar una amplia bibliografía. Además se considera que los avances que han tenido lugar en los últimos años en las tecnologías fotónicas van a permitir su uso en los métodos experimentales de análisis de las aguas. El conocimiento de sus propiedades ópticas permite caracterizar los diferentes tipos de aguas de acuerdo con sus compuestos, así como poder identificar su presencia. Todo ello abre un amplio abanico de aplicaciones. En esta tesis doctoral, se ha conseguido de manera general: • Realizar un estudio del estado del arte del conocimiento de las propiedades ópticas de la piel y la identificación de sus elementos dispersores de la luz. • Establecer una metodología de estudio que nos permita obtener datos sobre posibles efectos de la radiación en los tejidos biológicos. •Usar distintas herramientas informáticas para simular el transporte de la radiación laser en tejidos biológicos. • Realizar experimentos mediante simulación de láser, tejidos biológicos y detectores. • Comparar los resultados conocidos experimentalmente con los simulados. • Estudiar los instrumentos de medida de la respuesta a la propagación de radiación laser en tejidos anisotrópicos. • Obtener resultados originales para el diagnóstico y tratamiento de pieles, considerando diferente razas y como alteración posible en la piel, se ha estudiado la presencia del basalioma. • Aplicación de la metodología de estudio realizada en la piel a la simulación de agua de mar. • Obtener resultados originales de simulación y análisis de cantidad de fitoplancton en agua; con el objetivo de facilitar la caracterización de diferentes tipos de aguas. La tesis doctoral se articula en 6 capítulos y 3 anexos perfectamente diferenciados con su propia bibliografía en cada uno de ellos. El primer capítulo está centrado en la problemática del difícil estudio y caracterización de los medios heterogéneos debidos a su comportamiento no homogéneo y anisotrópico ante las radiaciones ópticas. Así pues, presentaremos una breve introducción al comportamiento tanto de los tejidos como del océano ante radiaciones ópticas y definiremos sus principales propiedades: la absorción, el scattering, la anisotropía y los coeficientes de reflexión. Como continuación, un segundo capítulo trata de acercarnos a la resolución del problema de cómo caracterizar las propiedades ópticas descritas en el primer capítulo. Para ello, primero se introducen los modelos teóricos, en segundo lugar los métodos de simulación más empleados y, por último, enumerar las principales técnicas de medida de la propagación de la luz en los tejidos vivos. El tercer capítulo, centrado en la piel y sus propiedades, intenta realizar una síntesis de lo que se conoce sobre el comportamiento de la piel frente a la propagación de las radiaciones ópticas. Se estudian sus elementos constituyentes y los distintos tipos de pieles. Por último se describe un ejemplo de aplicación más inmediata que se beneficia de este conocimiento. Sabemos que el porcentaje de agua en el cuerpo humano es muy elevado, en concreto en la piel se considera de aproximadamente un 70%. Es obvio, por tanto, que conocer cómo afecta el agua en la propagación de una radiación óptica facilitaría el disponer de patrones de referencia; para ello, se realiza el estudio del agua del mar. En el cuarto capítulo se estudian las propiedades del agua del mar como medio heterogéneo de partículas. En este capítulo presentamos una síntesis de los elementos más significativos de dispersores en el océano, un estudio de su comportamiento individual frente a radiaciones ópticas y su contribución al océano en su conjunto. Finalmente, en el quinto capítulo se describen los resultados obtenidos en los distintos tipos de simulaciones realizadas. Las herramientas de simulación empleadas han sido las mismas tanto para el caso del estudio de la piel como para el agua del mar, por ello ambos resultados son expuestos en el mismo capítulo. En el primer caso se analizan diferentes tipos de agua oceánica, mediante la variación de las concentraciones de fitoplancton. El método empleado permite comprobar las diferencias que pueden encontrarse en la caracterización y diagnóstico de aguas. El segundo caso analizado es el de la piel; donde se estudia el comportamiento de distintos tipos de piel, se analizan para validar el método y se comprueba cómo el resultado es compatible con aplicaciones, actualmente comerciales, como la de la depilación con láser. Como resultado significativo se muestra la posible metodología a aplicar para el diagnóstico del cáncer de piel conocido como basalioma. Finalmente presentamos un capítulo dedicado a los trabajos futuros basados en experimentación real y el coste asociado que implicaría el llevarlo a cabo. Los anexos que concluyen la tesis doctoral versan por un lado sobre el funcionamiento del vector común de toda la tesis: el láser, sus aplicaciones y su control en la seguridad y por otro presentamos los coeficientes de absorción y scattering que hemos utilizado en nuestras simulaciones. El primero condensa las principales características de una radiación láser desde el punto de vista de su generación, el segundo presenta la seguridad en su uso y el tercero son tablas propias, cuyos parámetros son los utilizados en el apartado de experimentación. Aunque por el tipo de tesis que defiendo no se ajusta a los modelos canónicos de tesis doctoral, el lector podrá encontrar en esta tesis de forma imbricada, el modelo común a todas las tesis o proyectos de investigación con una sección dedicada al estado del arte con ejemplos pedagógicos para facilitar la compresión y se plantean unos objetivos (capítulos 1-4), y un capítulo que se subdivide en materiales y métodos y resultados y discusiones (capítulo 5 con sus subsecciones), para finalizar con una vista al futuro y los trabajos futuros que se desprenden de la tesis (capítulo 6). ABSTRACT As contribution to the study of heterogeneous media, this thesis covers the work carried out on theoretical modelling and simulation study of the optical properties of the skin and seawater, as paradigmatic examples of heterogeneous media. It is taken as a starting point the study of the propagation of optical radiation, in particular laser radiation in a biological tissue. The importance of optical characterization of a tissue is critical for managing the interaction between radiation and tissues that allows both diagnosis and therapy of diseases and / or dysfunctions in Health Sciences. Without forgetting the aim of providing a methodology of study, with "engineering approach" of the optical properties in a heterogeneous environment, which does not have to be exclusively biological tissue. As a result of this and the importance of water in biological tissues, we have decided to study the optical properties of water in a heterogeneous environment such as seawater in another chapter. The selection of sea water as an object of further study is motivated mainly because it is considered that the advances that have taken place in recent years in photonic technologies will allow its use in experimental methods of water analysis. Knowledge of the optical properties to characterize the different types of waters according to their compounds, as well as to identify its presence. All of this opens a wide range of applications. In this thesis, it has been generally achieved: • Conduct a study of the state of the art knowledge of the optical properties of the skin and identifying its light scattering elements. • Establish a study methodology that allows us to obtain data on possible effects of radiation on biological tissues. • Use different computer tools to simulate the transport of laser radiation in biological tissues. • Conduct experiments by simulating: laser, detectors, and biological tissues. • Compare the known results with our experimentally simulation. • Study the measuring instruments and its response to the propagation of laser radiation in anisotropic tissues. • Get innovative results for diagnosis and treatment of skin, considering different races and a possible alteration in the skin that we studied: the presence of basal cell carcinoma. • Application of the methodology of the study conducted in the skin to simulate seawater. • Get innovative results of simulation and analysis of amount of phytoplankton in water; in order to facilitate the characterization of different types of water. The dissertation is divided into six chapters and three annexes clearly distinguished by their own literature in each of them. The first chapter is focused on the problem of difficult study and characterization of heterogeneous media due to their inhomogeneous and anisotropic behaviour of optical radiation. So we present a brief introduction to the behaviour of both tissues at the cellular level as the ocean, to optical radiation and define the main optical properties: absorption, scattering, anisotropy and reflection coefficients. Following from this, a second chapter is an approach to solving the problem of how to characterize the optical properties described in the first chapter. For this, first the theoretical models are introduced, secondly simulation methods more used and, finally, the main techniques for measuring the propagation of light in living tissue. The third chapter is focused on the skin and its properties, tries to make a synthesis of what is known about the behaviour of the skin and its constituents tackle the spread of optical radiation. Different skin types are studied and an example of immediate application of this knowledge benefits described. We know that the percentage of water in the human body is very high, particularly in the skin is considered about 70%. It is obvious, therefore, that knowing how the water is affected by the propagation of an optical radiation facilitate to get reference patterns; For this, the study of seawater is performed. In the fourth chapter the properties of seawater as a heterogeneous component particles are studied. This chapter presents a summary of the scattering elements in the ocean, its individual response to optical radiation and its contribution to the ocean as a whole. In the fifth chapter the results of the different types of simulations are described. Simulation tools used were the same for the study of skin and seawater, so both results are presented in the chapter. In the first case different types of ocean water is analysed by varying the concentrations of phytoplankton. The method allows to check the differences that can be found in the characterization and diagnosis of water. The second case analysed is the skin; where the behaviour of different skin types are studied and checked how the result is compatible with applications currently trade, such as laser hair removal. As a significant result of the possible methodology to be applied for the diagnosis of skin cancer known as basal cell carcinoma is shown. Finally we present a chapter on future work based on actual experimentation and the associated cost which it would involve carrying out. The annexes conclude the thesis deal with one hand on the functioning of the common vector of the whole thesis: laser, control applications and safety and secondly we present the absorption and scattering coefficients we used in our simulations. The first condenses the main characteristics of laser radiation from the point of view of their generation, the second presents the safety in use and the third are own tables, whose parameters are used in the experimental section. Although the kind of view which I advocate does not meet the standard models doctoral thesis, the reader will find in this thesis so interwoven, the common model to all theses or research projects with a section on the state of the art pedagogical examples to facilitate the understanding and objectives (Chapters 1-4), and a chapter is divided into materials and methods and results and discussions (Chapter 5 subsections) arise, finishing with a view to the future and work future arising from the thesis (Chapter 6).
Resumo:
Los sistemas empotrados han sido concebidos tradicionalmente como sistemas de procesamiento específicos que realizan una tarea fija durante toda su vida útil. Para cumplir con requisitos estrictos de coste, tamaño y peso, el equipo de diseño debe optimizar su funcionamiento para condiciones muy específicas. Sin embargo, la demanda de mayor versatilidad, un funcionamiento más inteligente y, en definitiva, una mayor capacidad de procesamiento comenzaron a chocar con estas limitaciones, agravado por la incertidumbre asociada a entornos de operación cada vez más dinámicos donde comenzaban a ser desplegados progresivamente. Esto trajo como resultado una necesidad creciente de que los sistemas pudieran responder por si solos a eventos inesperados en tiempo diseño tales como: cambios en las características de los datos de entrada y el entorno del sistema en general; cambios en la propia plataforma de cómputo, por ejemplo debido a fallos o defectos de fabricación; y cambios en las propias especificaciones funcionales causados por unos objetivos del sistema dinámicos y cambiantes. Como consecuencia, la complejidad del sistema aumenta, pero a cambio se habilita progresivamente una capacidad de adaptación autónoma sin intervención humana a lo largo de la vida útil, permitiendo que tomen sus propias decisiones en tiempo de ejecución. Éstos sistemas se conocen, en general, como sistemas auto-adaptativos y tienen, entre otras características, las de auto-configuración, auto-optimización y auto-reparación. Típicamente, la parte soft de un sistema es mayoritariamente la única utilizada para proporcionar algunas capacidades de adaptación a un sistema. Sin embargo, la proporción rendimiento/potencia en dispositivos software como microprocesadores en muchas ocasiones no es adecuada para sistemas empotrados. En este escenario, el aumento resultante en la complejidad de las aplicaciones está siendo abordado parcialmente mediante un aumento en la complejidad de los dispositivos en forma de multi/many-cores; pero desafortunadamente, esto hace que el consumo de potencia también aumente. Además, la mejora en metodologías de diseño no ha sido acorde como para poder utilizar toda la capacidad de cómputo disponible proporcionada por los núcleos. Por todo ello, no se están satisfaciendo adecuadamente las demandas de cómputo que imponen las nuevas aplicaciones. La solución tradicional para mejorar la proporción rendimiento/potencia ha sido el cambio a unas especificaciones hardware, principalmente usando ASICs. Sin embargo, los costes de un ASIC son altamente prohibitivos excepto en algunos casos de producción en masa y además la naturaleza estática de su estructura complica la solución a las necesidades de adaptación. Los avances en tecnologías de fabricación han hecho que la FPGA, una vez lenta y pequeña, usada como glue logic en sistemas mayores, haya crecido hasta convertirse en un dispositivo de cómputo reconfigurable de gran potencia, con una cantidad enorme de recursos lógicos computacionales y cores hardware empotrados de procesamiento de señal y de propósito general. Sus capacidades de reconfiguración han permitido combinar la flexibilidad propia del software con el rendimiento del procesamiento en hardware, lo que tiene la potencialidad de provocar un cambio de paradigma en arquitectura de computadores, pues el hardware no puede ya ser considerado más como estático. El motivo es que como en el caso de las FPGAs basadas en tecnología SRAM, la reconfiguración parcial dinámica (DPR, Dynamic Partial Reconfiguration) es posible. Esto significa que se puede modificar (reconfigurar) un subconjunto de los recursos computacionales en tiempo de ejecución mientras el resto permanecen activos. Además, este proceso de reconfiguración puede ser ejecutado internamente por el propio dispositivo. El avance tecnológico en dispositivos hardware reconfigurables se encuentra recogido bajo el campo conocido como Computación Reconfigurable (RC, Reconfigurable Computing). Uno de los campos de aplicación más exóticos y menos convencionales que ha posibilitado la computación reconfigurable es el conocido como Hardware Evolutivo (EHW, Evolvable Hardware), en el cual se encuentra enmarcada esta tesis. La idea principal del concepto consiste en convertir hardware que es adaptable a través de reconfiguración en una entidad evolutiva sujeta a las fuerzas de un proceso evolutivo inspirado en el de las especies biológicas naturales, que guía la dirección del cambio. Es una aplicación más del campo de la Computación Evolutiva (EC, Evolutionary Computation), que comprende una serie de algoritmos de optimización global conocidos como Algoritmos Evolutivos (EA, Evolutionary Algorithms), y que son considerados como algoritmos universales de resolución de problemas. En analogía al proceso biológico de la evolución, en el hardware evolutivo el sujeto de la evolución es una población de circuitos que intenta adaptarse a su entorno mediante una adecuación progresiva generación tras generación. Los individuos pasan a ser configuraciones de circuitos en forma de bitstreams caracterizados por descripciones de circuitos reconfigurables. Seleccionando aquellos que se comportan mejor, es decir, que tienen una mejor adecuación (o fitness) después de ser evaluados, y usándolos como padres de la siguiente generación, el algoritmo evolutivo crea una nueva población hija usando operadores genéticos como la mutación y la recombinación. Según se van sucediendo generaciones, se espera que la población en conjunto se aproxime a la solución óptima al problema de encontrar una configuración del circuito adecuada que satisfaga las especificaciones. El estado de la tecnología de reconfiguración después de que la familia de FPGAs XC6200 de Xilinx fuera retirada y reemplazada por las familias Virtex a finales de los 90, supuso un gran obstáculo para el avance en hardware evolutivo; formatos de bitstream cerrados (no conocidos públicamente); dependencia de herramientas del fabricante con soporte limitado de DPR; una velocidad de reconfiguración lenta; y el hecho de que modificaciones aleatorias del bitstream pudieran resultar peligrosas para la integridad del dispositivo, son algunas de estas razones. Sin embargo, una propuesta a principios de los años 2000 permitió mantener la investigación en el campo mientras la tecnología de DPR continuaba madurando, el Circuito Virtual Reconfigurable (VRC, Virtual Reconfigurable Circuit). En esencia, un VRC en una FPGA es una capa virtual que actúa como un circuito reconfigurable de aplicación específica sobre la estructura nativa de la FPGA que reduce la complejidad del proceso reconfiguración y aumenta su velocidad (comparada con la reconfiguración nativa). Es un array de nodos computacionales especificados usando descripciones HDL estándar que define recursos reconfigurables ad-hoc: multiplexores de rutado y un conjunto de elementos de procesamiento configurables, cada uno de los cuales tiene implementadas todas las funciones requeridas, que pueden seleccionarse a través de multiplexores tal y como ocurre en una ALU de un microprocesador. Un registro grande actúa como memoria de configuración, por lo que la reconfiguración del VRC es muy rápida ya que tan sólo implica la escritura de este registro, el cual controla las señales de selección del conjunto de multiplexores. Sin embargo, esta capa virtual provoca: un incremento de área debido a la implementación simultánea de cada función en cada nodo del array más los multiplexores y un aumento del retardo debido a los multiplexores, reduciendo la frecuencia de funcionamiento máxima. La naturaleza del hardware evolutivo, capaz de optimizar su propio comportamiento computacional, le convierten en un buen candidato para avanzar en la investigación sobre sistemas auto-adaptativos. Combinar un sustrato de cómputo auto-reconfigurable capaz de ser modificado dinámicamente en tiempo de ejecución con un algoritmo empotrado que proporcione una dirección de cambio, puede ayudar a satisfacer los requisitos de adaptación autónoma de sistemas empotrados basados en FPGA. La propuesta principal de esta tesis está por tanto dirigida a contribuir a la auto-adaptación del hardware de procesamiento de sistemas empotrados basados en FPGA mediante hardware evolutivo. Esto se ha abordado considerando que el comportamiento computacional de un sistema puede ser modificado cambiando cualquiera de sus dos partes constitutivas: una estructura hard subyacente y un conjunto de parámetros soft. De esta distinción, se derivan dos lineas de trabajo. Por un lado, auto-adaptación paramétrica, y por otro auto-adaptación estructural. El objetivo perseguido en el caso de la auto-adaptación paramétrica es la implementación de técnicas de optimización evolutiva complejas en sistemas empotrados con recursos limitados para la adaptación paramétrica online de circuitos de procesamiento de señal. La aplicación seleccionada como prueba de concepto es la optimización para tipos muy específicos de imágenes de los coeficientes de los filtros de transformadas wavelet discretas (DWT, DiscreteWavelet Transform), orientada a la compresión de imágenes. Por tanto, el objetivo requerido de la evolución es una compresión adaptativa y más eficiente comparada con los procedimientos estándar. El principal reto radica en reducir la necesidad de recursos de supercomputación para el proceso de optimización propuesto en trabajos previos, de modo que se adecúe para la ejecución en sistemas empotrados. En cuanto a la auto-adaptación estructural, el objetivo de la tesis es la implementación de circuitos auto-adaptativos en sistemas evolutivos basados en FPGA mediante un uso eficiente de sus capacidades de reconfiguración nativas. En este caso, la prueba de concepto es la evolución de tareas de procesamiento de imagen tales como el filtrado de tipos desconocidos y cambiantes de ruido y la detección de bordes en la imagen. En general, el objetivo es la evolución en tiempo de ejecución de tareas de procesamiento de imagen desconocidas en tiempo de diseño (dentro de un cierto grado de complejidad). En este caso, el objetivo de la propuesta es la incorporación de DPR en EHW para evolucionar la arquitectura de un array sistólico adaptable mediante reconfiguración cuya capacidad de evolución no había sido estudiada previamente. Para conseguir los dos objetivos mencionados, esta tesis propone originalmente una plataforma evolutiva que integra un motor de adaptación (AE, Adaptation Engine), un motor de reconfiguración (RE, Reconfiguration Engine) y un motor computacional (CE, Computing Engine) adaptable. El el caso de adaptación paramétrica, la plataforma propuesta está caracterizada por: • un CE caracterizado por un núcleo de procesamiento hardware de DWT adaptable mediante registros reconfigurables que contienen los coeficientes de los filtros wavelet • un algoritmo evolutivo como AE que busca filtros wavelet candidatos a través de un proceso de optimización paramétrica desarrollado específicamente para sistemas caracterizados por recursos de procesamiento limitados • un nuevo operador de mutación simplificado para el algoritmo evolutivo utilizado, que junto con un mecanismo de evaluación rápida de filtros wavelet candidatos derivado de la literatura actual, asegura la viabilidad de la búsqueda evolutiva asociada a la adaptación de wavelets. En el caso de adaptación estructural, la plataforma propuesta toma la forma de: • un CE basado en una plantilla de array sistólico reconfigurable de 2 dimensiones compuesto de nodos de procesamiento reconfigurables • un algoritmo evolutivo como AE que busca configuraciones candidatas del array usando un conjunto de funcionalidades de procesamiento para los nodos disponible en una biblioteca accesible en tiempo de ejecución • un RE hardware que explota la capacidad de reconfiguración nativa de las FPGAs haciendo un uso eficiente de los recursos reconfigurables del dispositivo para cambiar el comportamiento del CE en tiempo de ejecución • una biblioteca de elementos de procesamiento reconfigurables caracterizada por bitstreams parciales independientes de la posición, usados como el conjunto de configuraciones disponibles para los nodos de procesamiento del array Las contribuciones principales de esta tesis se pueden resumir en la siguiente lista: • Una plataforma evolutiva basada en FPGA para la auto-adaptación paramétrica y estructural de sistemas empotrados compuesta por un motor computacional (CE), un motor de adaptación (AE) evolutivo y un motor de reconfiguración (RE). Esta plataforma se ha desarrollado y particularizado para los casos de auto-adaptación paramétrica y estructural. • En cuanto a la auto-adaptación paramétrica, las contribuciones principales son: – Un motor computacional adaptable mediante registros que permite la adaptación paramétrica de los coeficientes de una implementación hardware adaptativa de un núcleo de DWT. – Un motor de adaptación basado en un algoritmo evolutivo desarrollado específicamente para optimización numérica, aplicada a los coeficientes de filtros wavelet en sistemas empotrados con recursos limitados. – Un núcleo IP de DWT auto-adaptativo en tiempo de ejecución para sistemas empotrados que permite la optimización online del rendimiento de la transformada para compresión de imágenes en entornos específicos de despliegue, caracterizados por tipos diferentes de señal de entrada. – Un modelo software y una implementación hardware de una herramienta para la construcción evolutiva automática de transformadas wavelet específicas. • Por último, en cuanto a la auto-adaptación estructural, las contribuciones principales son: – Un motor computacional adaptable mediante reconfiguración nativa de FPGAs caracterizado por una plantilla de array sistólico en dos dimensiones de nodos de procesamiento reconfigurables. Es posible mapear diferentes tareas de cómputo en el array usando una biblioteca de elementos sencillos de procesamiento reconfigurables. – Definición de una biblioteca de elementos de procesamiento apropiada para la síntesis autónoma en tiempo de ejecución de diferentes tareas de procesamiento de imagen. – Incorporación eficiente de la reconfiguración parcial dinámica (DPR) en sistemas de hardware evolutivo, superando los principales inconvenientes de propuestas previas como los circuitos reconfigurables virtuales (VRCs). En este trabajo también se comparan originalmente los detalles de implementación de ambas propuestas. – Una plataforma tolerante a fallos, auto-curativa, que permite la recuperación funcional online en entornos peligrosos. La plataforma ha sido caracterizada desde una perspectiva de tolerancia a fallos: se proponen modelos de fallo a nivel de CLB y de elemento de procesamiento, y usando el motor de reconfiguración, se hace un análisis sistemático de fallos para un fallo en cada elemento de procesamiento y para dos fallos acumulados. – Una plataforma con calidad de filtrado dinámica que permite la adaptación online a tipos de ruido diferentes y diferentes comportamientos computacionales teniendo en cuenta los recursos de procesamiento disponibles. Por un lado, se evolucionan filtros con comportamientos no destructivos, que permiten esquemas de filtrado en cascada escalables; y por otro, también se evolucionan filtros escalables teniendo en cuenta requisitos computacionales de filtrado cambiantes dinámicamente. Este documento está organizado en cuatro partes y nueve capítulos. La primera parte contiene el capítulo 1, una introducción y motivación sobre este trabajo de tesis. A continuación, el marco de referencia en el que se enmarca esta tesis se analiza en la segunda parte: el capítulo 2 contiene una introducción a los conceptos de auto-adaptación y computación autonómica (autonomic computing) como un campo de investigación más general que el muy específico de este trabajo; el capítulo 3 introduce la computación evolutiva como la técnica para dirigir la adaptación; el capítulo 4 analiza las plataformas de computación reconfigurables como la tecnología para albergar hardware auto-adaptativo; y finalmente, el capítulo 5 define, clasifica y hace un sondeo del campo del hardware evolutivo. Seguidamente, la tercera parte de este trabajo contiene la propuesta, desarrollo y resultados obtenidos: mientras que el capítulo 6 contiene una declaración de los objetivos de la tesis y la descripción de la propuesta en su conjunto, los capítulos 7 y 8 abordan la auto-adaptación paramétrica y estructural, respectivamente. Finalmente, el capítulo 9 de la parte 4 concluye el trabajo y describe caminos de investigación futuros. ABSTRACT Embedded systems have traditionally been conceived to be specific-purpose computers with one, fixed computational task for their whole lifetime. Stringent requirements in terms of cost, size and weight forced designers to highly optimise their operation for very specific conditions. However, demands for versatility, more intelligent behaviour and, in summary, an increased computing capability began to clash with these limitations, intensified by the uncertainty associated to the more dynamic operating environments where they were progressively being deployed. This brought as a result an increasing need for systems to respond by themselves to unexpected events at design time, such as: changes in input data characteristics and system environment in general; changes in the computing platform itself, e.g., due to faults and fabrication defects; and changes in functional specifications caused by dynamically changing system objectives. As a consequence, systems complexity is increasing, but in turn, autonomous lifetime adaptation without human intervention is being progressively enabled, allowing them to take their own decisions at run-time. This type of systems is known, in general, as selfadaptive, and are able, among others, of self-configuration, self-optimisation and self-repair. Traditionally, the soft part of a system has mostly been so far the only place to provide systems with some degree of adaptation capabilities. However, the performance to power ratios of software driven devices like microprocessors are not adequate for embedded systems in many situations. In this scenario, the resulting rise in applications complexity is being partly addressed by rising devices complexity in the form of multi and many core devices; but sadly, this keeps on increasing power consumption. Besides, design methodologies have not been improved accordingly to completely leverage the available computational power from all these cores. Altogether, these factors make that the computing demands new applications pose are not being wholly satisfied. The traditional solution to improve performance to power ratios has been the switch to hardware driven specifications, mainly using ASICs. However, their costs are highly prohibitive except for some mass production cases and besidesthe static nature of its structure complicates the solution to the adaptation needs. The advancements in fabrication technologies have made that the once slow, small FPGA used as glue logic in bigger systems, had grown to be a very powerful, reconfigurable computing device with a vast amount of computational logic resources and embedded, hardened signal and general purpose processing cores. Its reconfiguration capabilities have enabled software-like flexibility to be combined with hardware-like computing performance, which has the potential to cause a paradigm shift in computer architecture since hardware cannot be considered as static anymore. This is so, since, as is the case with SRAMbased FPGAs, Dynamic Partial Reconfiguration (DPR) is possible. This means that subsets of the FPGA computational resources can now be changed (reconfigured) at run-time while the rest remains active. Besides, this reconfiguration process can be triggered internally by the device itself. This technological boost in reconfigurable hardware devices is actually covered under the field known as Reconfigurable Computing. One of the most exotic fields of application that Reconfigurable Computing has enabled is the known as Evolvable Hardware (EHW), in which this dissertation is framed. The main idea behind the concept is turning hardware that is adaptable through reconfiguration into an evolvable entity subject to the forces of an evolutionary process, inspired by that of natural, biological species, that guides the direction of change. It is yet another application of the field of Evolutionary Computation (EC), which comprises a set of global optimisation algorithms known as Evolutionary Algorithms (EAs), considered as universal problem solvers. In analogy to the biological process of evolution, in EHW the subject of evolution is a population of circuits that tries to get adapted to its surrounding environment by progressively getting better fitted to it generation after generation. Individuals become circuit configurations representing bitstreams that feature reconfigurable circuit descriptions. By selecting those that behave better, i.e., with a higher fitness value after being evaluated, and using them as parents of the following generation, the EA creates a new offspring population by using so called genetic operators like mutation and recombination. As generations succeed one another, the whole population is expected to approach to the optimum solution to the problem of finding an adequate circuit configuration that fulfils system objectives. The state of reconfiguration technology after Xilinx XC6200 FPGA family was discontinued and replaced by Virtex families in the late 90s, was a major obstacle for advancements in EHW; closed (non publicly known) bitstream formats; dependence on manufacturer tools with highly limiting support of DPR; slow speed of reconfiguration; and random bitstream modifications being potentially hazardous for device integrity, are some of these reasons. However, a proposal in the first 2000s allowed to keep investigating in this field while DPR technology kept maturing, the Virtual Reconfigurable Circuit (VRC). In essence, a VRC in an FPGA is a virtual layer acting as an application specific reconfigurable circuit on top of an FPGA fabric that reduces the complexity of the reconfiguration process and increases its speed (compared to native reconfiguration). It is an array of computational nodes specified using standard HDL descriptions that define ad-hoc reconfigurable resources; routing multiplexers and a set of configurable processing elements, each one containing all the required functions, which are selectable through functionality multiplexers as in microprocessor ALUs. A large register acts as configuration memory, so VRC reconfiguration is very fast given it only involves writing this register, which drives the selection signals of the set of multiplexers. However, large overheads are introduced by this virtual layer; an area overhead due to the simultaneous implementation of every function in every node of the array plus the multiplexers, and a delay overhead due to the multiplexers, which also reduces maximum frequency of operation. The very nature of Evolvable Hardware, able to optimise its own computational behaviour, makes it a good candidate to advance research in self-adaptive systems. Combining a selfreconfigurable computing substrate able to be dynamically changed at run-time with an embedded algorithm that provides a direction for change, can help fulfilling requirements for autonomous lifetime adaptation of FPGA-based embedded systems. The main proposal of this thesis is hence directed to contribute to autonomous self-adaptation of the underlying computational hardware of FPGA-based embedded systems by means of Evolvable Hardware. This is tackled by considering that the computational behaviour of a system can be modified by changing any of its two constituent parts: an underlying hard structure and a set of soft parameters. Two main lines of work derive from this distinction. On one side, parametric self-adaptation and, on the other side, structural self-adaptation. The goal pursued in the case of parametric self-adaptation is the implementation of complex evolutionary optimisation techniques in resource constrained embedded systems for online parameter adaptation of signal processing circuits. The application selected as proof of concept is the optimisation of Discrete Wavelet Transforms (DWT) filters coefficients for very specific types of images, oriented to image compression. Hence, adaptive and improved compression efficiency, as compared to standard techniques, is the required goal of evolution. The main quest lies in reducing the supercomputing resources reported in previous works for the optimisation process in order to make it suitable for embedded systems. Regarding structural self-adaptation, the thesis goal is the implementation of self-adaptive circuits in FPGA-based evolvable systems through an efficient use of native reconfiguration capabilities. In this case, evolution of image processing tasks such as filtering of unknown and changing types of noise and edge detection are the selected proofs of concept. In general, evolving unknown image processing behaviours (within a certain complexity range) at design time is the required goal. In this case, the mission of the proposal is the incorporation of DPR in EHW to evolve a systolic array architecture adaptable through reconfiguration whose evolvability had not been previously checked. In order to achieve the two stated goals, this thesis originally proposes an evolvable platform that integrates an Adaptation Engine (AE), a Reconfiguration Engine (RE) and an adaptable Computing Engine (CE). In the case of parametric adaptation, the proposed platform is characterised by: • a CE featuring a DWT hardware processing core adaptable through reconfigurable registers that holds wavelet filters coefficients • an evolutionary algorithm as AE that searches for candidate wavelet filters through a parametric optimisation process specifically developed for systems featured by scarce computing resources • a new, simplified mutation operator for the selected EA, that together with a fast evaluation mechanism of candidate wavelet filters derived from existing literature, assures the feasibility of the evolutionary search involved in wavelets adaptation In the case of structural adaptation, the platform proposal takes the form of: • a CE based on a reconfigurable 2D systolic array template composed of reconfigurable processing nodes • an evolutionary algorithm as AE that searches for candidate configurations of the array using a set of computational functionalities for the nodes available in a run time accessible library • a hardware RE that exploits native DPR capabilities of FPGAs and makes an efficient use of the available reconfigurable resources of the device to change the behaviour of the CE at run time • a library of reconfigurable processing elements featured by position-independent partial bitstreams used as the set of available configurations for the processing nodes of the array Main contributions of this thesis can be summarised in the following list. • An FPGA-based evolvable platform for parametric and structural self-adaptation of embedded systems composed of a Computing Engine, an evolutionary Adaptation Engine and a Reconfiguration Engine. This platform is further developed and tailored for both parametric and structural self-adaptation. • Regarding parametric self-adaptation, main contributions are: – A CE adaptable through reconfigurable registers that enables parametric adaptation of the coefficients of an adaptive hardware implementation of a DWT core. – An AE based on an Evolutionary Algorithm specifically developed for numerical optimisation applied to wavelet filter coefficients in resource constrained embedded systems. – A run-time self-adaptive DWT IP core for embedded systems that allows for online optimisation of transform performance for image compression for specific deployment environments characterised by different types of input signals. – A software model and hardware implementation of a tool for the automatic, evolutionary construction of custom wavelet transforms. • Lastly, regarding structural self-adaptation, main contributions are: – A CE adaptable through native FPGA fabric reconfiguration featured by a two dimensional systolic array template of reconfigurable processing nodes. Different processing behaviours can be automatically mapped in the array by using a library of simple reconfigurable processing elements. – Definition of a library of such processing elements suited for autonomous runtime synthesis of different image processing tasks. – Efficient incorporation of DPR in EHW systems, overcoming main drawbacks from the previous approach of virtual reconfigurable circuits. Implementation details for both approaches are also originally compared in this work. – A fault tolerant, self-healing platform that enables online functional recovery in hazardous environments. The platform has been characterised from a fault tolerance perspective: fault models at FPGA CLB level and processing elements level are proposed, and using the RE, a systematic fault analysis for one fault in every processing element and for two accumulated faults is done. – A dynamic filtering quality platform that permits on-line adaptation to different types of noise and different computing behaviours considering the available computing resources. On one side, non-destructive filters are evolved, enabling scalable cascaded filtering schemes; and on the other, size-scalable filters are also evolved considering dynamically changing computational filtering requirements. This dissertation is organized in four parts and nine chapters. First part contains chapter 1, the introduction to and motivation of this PhD work. Following, the reference framework in which this dissertation is framed is analysed in the second part: chapter 2 features an introduction to the notions of self-adaptation and autonomic computing as a more general research field to the very specific one of this work; chapter 3 introduces evolutionary computation as the technique to drive adaptation; chapter 4 analyses platforms for reconfigurable computing as the technology to hold self-adaptive hardware; and finally chapter 5 defines, classifies and surveys the field of Evolvable Hardware. Third part of the work follows, which contains the proposal, development and results obtained: while chapter 6 contains an statement of the thesis goals and the description of the proposal as a whole, chapters 7 and 8 address parametric and structural self-adaptation, respectively. Finally, chapter 9 in part 4 concludes the work and describes future research paths.
Resumo:
Esta tesis doctoral se enmarca dentro del campo de los sistemas embebidos reconfigurables, redes de sensores inalámbricas para aplicaciones de altas prestaciones, y computación distribuida. El documento se centra en el estudio de alternativas de procesamiento para sistemas embebidos autónomos distribuidos de altas prestaciones (por sus siglas en inglés, High-Performance Autonomous Distributed Systems (HPADS)), así como su evolución hacia el procesamiento de alta resolución. El estudio se ha llevado a cabo tanto a nivel de plataforma como a nivel de las arquitecturas de procesamiento dentro de la plataforma con el objetivo de optimizar aspectos tan relevantes como la eficiencia energética, la capacidad de cómputo y la tolerancia a fallos del sistema. Los HPADS son sistemas realimentados, normalmente formados por elementos distribuidos conectados o no en red, con cierta capacidad de adaptación, y con inteligencia suficiente para llevar a cabo labores de prognosis y/o autoevaluación. Esta clase de sistemas suele formar parte de sistemas más complejos llamados sistemas ciber-físicos (por sus siglas en inglés, Cyber-Physical Systems (CPSs)). Los CPSs cubren un espectro enorme de aplicaciones, yendo desde aplicaciones médicas, fabricación, o aplicaciones aeroespaciales, entre otras muchas. Para el diseño de este tipo de sistemas, aspectos tales como la confiabilidad, la definición de modelos de computación, o el uso de metodologías y/o herramientas que faciliten el incremento de la escalabilidad y de la gestión de la complejidad, son fundamentales. La primera parte de esta tesis doctoral se centra en el estudio de aquellas plataformas existentes en el estado del arte que por sus características pueden ser aplicables en el campo de los CPSs, así como en la propuesta de un nuevo diseño de plataforma de altas prestaciones que se ajuste mejor a los nuevos y más exigentes requisitos de las nuevas aplicaciones. Esta primera parte incluye descripción, implementación y validación de la plataforma propuesta, así como conclusiones sobre su usabilidad y sus limitaciones. Los principales objetivos para el diseño de la plataforma propuesta se enumeran a continuación: • Estudiar la viabilidad del uso de una FPGA basada en RAM como principal procesador de la plataforma en cuanto a consumo energético y capacidad de cómputo. • Propuesta de técnicas de gestión del consumo de energía en cada etapa del perfil de trabajo de la plataforma. •Propuestas para la inclusión de reconfiguración dinámica y parcial de la FPGA (por sus siglas en inglés, Dynamic Partial Reconfiguration (DPR)) de forma que sea posible cambiar ciertas partes del sistema en tiempo de ejecución y sin necesidad de interrumpir al resto de las partes. Evaluar su aplicabilidad en el caso de HPADS. Las nuevas aplicaciones y nuevos escenarios a los que se enfrentan los CPSs, imponen nuevos requisitos en cuanto al ancho de banda necesario para el procesamiento de los datos, así como en la adquisición y comunicación de los mismos, además de un claro incremento en la complejidad de los algoritmos empleados. Para poder cumplir con estos nuevos requisitos, las plataformas están migrando desde sistemas tradicionales uni-procesador de 8 bits, a sistemas híbridos hardware-software que incluyen varios procesadores, o varios procesadores y lógica programable. Entre estas nuevas arquitecturas, las FPGAs y los sistemas en chip (por sus siglas en inglés, System on Chip (SoC)) que incluyen procesadores embebidos y lógica programable, proporcionan soluciones con muy buenos resultados en cuanto a consumo energético, precio, capacidad de cómputo y flexibilidad. Estos buenos resultados son aún mejores cuando las aplicaciones tienen altos requisitos de cómputo y cuando las condiciones de trabajo son muy susceptibles de cambiar en tiempo real. La plataforma propuesta en esta tesis doctoral se ha denominado HiReCookie. La arquitectura incluye una FPGA basada en RAM como único procesador, así como un diseño compatible con la plataforma para redes de sensores inalámbricas desarrollada en el Centro de Electrónica Industrial de la Universidad Politécnica de Madrid (CEI-UPM) conocida como Cookies. Esta FPGA, modelo Spartan-6 LX150, era, en el momento de inicio de este trabajo, la mejor opción en cuanto a consumo y cantidad de recursos integrados, cuando además, permite el uso de reconfiguración dinámica y parcial. Es importante resaltar que aunque los valores de consumo son los mínimos para esta familia de componentes, la potencia instantánea consumida sigue siendo muy alta para aquellos sistemas que han de trabajar distribuidos, de forma autónoma, y en la mayoría de los casos alimentados por baterías. Por esta razón, es necesario incluir en el diseño estrategias de ahorro energético para incrementar la usabilidad y el tiempo de vida de la plataforma. La primera estrategia implementada consiste en dividir la plataforma en distintas islas de alimentación de forma que sólo aquellos elementos que sean estrictamente necesarios permanecerán alimentados, cuando el resto puede estar completamente apagado. De esta forma es posible combinar distintos modos de operación y así optimizar enormemente el consumo de energía. El hecho de apagar la FPGA para ahora energía durante los periodos de inactividad, supone la pérdida de la configuración, puesto que la memoria de configuración es una memoria volátil. Para reducir el impacto en el consumo y en el tiempo que supone la reconfiguración total de la plataforma una vez encendida, en este trabajo, se incluye una técnica para la compresión del archivo de configuración de la FPGA, de forma que se consiga una reducción del tiempo de configuración y por ende de la energía consumida. Aunque varios de los requisitos de diseño pueden satisfacerse con el diseño de la plataforma HiReCookie, es necesario seguir optimizando diversos parámetros tales como el consumo energético, la tolerancia a fallos y la capacidad de procesamiento. Esto sólo es posible explotando todas las posibilidades ofrecidas por la arquitectura de procesamiento en la FPGA. Por lo tanto, la segunda parte de esta tesis doctoral está centrada en el diseño de una arquitectura reconfigurable denominada ARTICo3 (Arquitectura Reconfigurable para el Tratamiento Inteligente de Cómputo, Confiabilidad y Consumo de energía) para la mejora de estos parámetros por medio de un uso dinámico de recursos. ARTICo3 es una arquitectura de procesamiento para FPGAs basadas en RAM, con comunicación tipo bus, preparada para dar soporte para la gestión dinámica de los recursos internos de la FPGA en tiempo de ejecución gracias a la inclusión de reconfiguración dinámica y parcial. Gracias a esta capacidad de reconfiguración parcial, es posible adaptar los niveles de capacidad de procesamiento, energía consumida o tolerancia a fallos para responder a las demandas de la aplicación, entorno, o métricas internas del dispositivo mediante la adaptación del número de recursos asignados para cada tarea. Durante esta segunda parte de la tesis se detallan el diseño de la arquitectura, su implementación en la plataforma HiReCookie, así como en otra familia de FPGAs, y su validación por medio de diferentes pruebas y demostraciones. Los principales objetivos que se plantean la arquitectura son los siguientes: • Proponer una metodología basada en un enfoque multi-hilo, como las propuestas por CUDA (por sus siglas en inglés, Compute Unified Device Architecture) u Open CL, en la cual distintos kernels, o unidades de ejecución, se ejecuten en un numero variable de aceleradores hardware sin necesidad de cambios en el código de aplicación. • Proponer un diseño y proporcionar una arquitectura en la que las condiciones de trabajo cambien de forma dinámica dependiendo bien de parámetros externos o bien de parámetros que indiquen el estado de la plataforma. Estos cambios en el punto de trabajo de la arquitectura serán posibles gracias a la reconfiguración dinámica y parcial de aceleradores hardware en tiempo real. • Explotar las posibilidades de procesamiento concurrente, incluso en una arquitectura basada en bus, por medio de la optimización de las transacciones en ráfaga de datos hacia los aceleradores. •Aprovechar las ventajas ofrecidas por la aceleración lograda por módulos puramente hardware para conseguir una mejor eficiencia energética. • Ser capaces de cambiar los niveles de redundancia de hardware de forma dinámica según las necesidades del sistema en tiempo real y sin cambios para el código de aplicación. • Proponer una capa de abstracción entre el código de aplicación y el uso dinámico de los recursos de la FPGA. El diseño en FPGAs permite la utilización de módulos hardware específicamente creados para una aplicación concreta. De esta forma es posible obtener rendimientos mucho mayores que en el caso de las arquitecturas de propósito general. Además, algunas FPGAs permiten la reconfiguración dinámica y parcial de ciertas partes de su lógica en tiempo de ejecución, lo cual dota al diseño de una gran flexibilidad. Los fabricantes de FPGAs ofrecen arquitecturas predefinidas con la posibilidad de añadir bloques prediseñados y poder formar sistemas en chip de una forma más o menos directa. Sin embargo, la forma en la que estos módulos hardware están organizados dentro de la arquitectura interna ya sea estática o dinámicamente, o la forma en la que la información se intercambia entre ellos, influye enormemente en la capacidad de cómputo y eficiencia energética del sistema. De la misma forma, la capacidad de cargar módulos hardware bajo demanda, permite añadir bloques redundantes que permitan aumentar el nivel de tolerancia a fallos de los sistemas. Sin embargo, la complejidad ligada al diseño de bloques hardware dedicados no debe ser subestimada. Es necesario tener en cuenta que el diseño de un bloque hardware no es sólo su propio diseño, sino también el diseño de sus interfaces, y en algunos casos de los drivers software para su manejo. Además, al añadir más bloques, el espacio de diseño se hace más complejo, y su programación más difícil. Aunque la mayoría de los fabricantes ofrecen interfaces predefinidas, IPs (por sus siglas en inglés, Intelectual Property) comerciales y plantillas para ayudar al diseño de los sistemas, para ser capaces de explotar las posibilidades reales del sistema, es necesario construir arquitecturas sobre las ya establecidas para facilitar el uso del paralelismo, la redundancia, y proporcionar un entorno que soporte la gestión dinámica de los recursos. Para proporcionar este tipo de soporte, ARTICo3 trabaja con un espacio de soluciones formado por tres ejes fundamentales: computación, consumo energético y confiabilidad. De esta forma, cada punto de trabajo se obtiene como una solución de compromiso entre estos tres parámetros. Mediante el uso de la reconfiguración dinámica y parcial y una mejora en la transmisión de los datos entre la memoria principal y los aceleradores, es posible dedicar un número variable de recursos en el tiempo para cada tarea, lo que hace que los recursos internos de la FPGA sean virtualmente ilimitados. Este variación en el tiempo del número de recursos por tarea se puede usar bien para incrementar el nivel de paralelismo, y por ende de aceleración, o bien para aumentar la redundancia, y por lo tanto el nivel de tolerancia a fallos. Al mismo tiempo, usar un numero óptimo de recursos para una tarea mejora el consumo energético ya que bien es posible disminuir la potencia instantánea consumida, o bien el tiempo de procesamiento. Con el objetivo de mantener los niveles de complejidad dentro de unos límites lógicos, es importante que los cambios realizados en el hardware sean totalmente transparentes para el código de aplicación. A este respecto, se incluyen distintos niveles de transparencia: • Transparencia a la escalabilidad: los recursos usados por una misma tarea pueden ser modificados sin que el código de aplicación sufra ningún cambio. • Transparencia al rendimiento: el sistema aumentara su rendimiento cuando la carga de trabajo aumente, sin cambios en el código de aplicación. • Transparencia a la replicación: es posible usar múltiples instancias de un mismo módulo bien para añadir redundancia o bien para incrementar la capacidad de procesamiento. Todo ello sin que el código de aplicación cambie. • Transparencia a la posición: la posición física de los módulos hardware es arbitraria para su direccionamiento desde el código de aplicación. • Transparencia a los fallos: si existe un fallo en un módulo hardware, gracias a la redundancia, el código de aplicación tomará directamente el resultado correcto. • Transparencia a la concurrencia: el hecho de que una tarea sea realizada por más o menos bloques es transparente para el código que la invoca. Por lo tanto, esta tesis doctoral contribuye en dos líneas diferentes. En primer lugar, con el diseño de la plataforma HiReCookie y en segundo lugar con el diseño de la arquitectura ARTICo3. Las principales contribuciones de esta tesis se resumen a continuación. • Arquitectura de la HiReCookie incluyendo: o Compatibilidad con la plataforma Cookies para incrementar las capacidades de esta. o División de la arquitectura en distintas islas de alimentación. o Implementación de los diversos modos de bajo consumo y políticas de despertado del nodo. o Creación de un archivo de configuración de la FPGA comprimido para reducir el tiempo y el consumo de la configuración inicial. • Diseño de la arquitectura reconfigurable para FPGAs basadas en RAM ARTICo3: o Modelo de computación y modos de ejecución inspirados en el modelo de CUDA pero basados en hardware reconfigurable con un número variable de bloques de hilos por cada unidad de ejecución. o Estructura para optimizar las transacciones de datos en ráfaga proporcionando datos en cascada o en paralelo a los distinto módulos incluyendo un proceso de votado por mayoría y operaciones de reducción. o Capa de abstracción entre el procesador principal que incluye el código de aplicación y los recursos asignados para las diferentes tareas. o Arquitectura de los módulos hardware reconfigurables para mantener la escalabilidad añadiendo una la interfaz para las nuevas funcionalidades con un simple acceso a una memoria RAM interna. o Caracterización online de las tareas para proporcionar información a un módulo de gestión de recursos para mejorar la operación en términos de energía y procesamiento cuando además se opera entre distintos nieles de tolerancia a fallos. El documento está dividido en dos partes principales formando un total de cinco capítulos. En primer lugar, después de motivar la necesidad de nuevas plataformas para cubrir las nuevas aplicaciones, se detalla el diseño de la plataforma HiReCookie, sus partes, las posibilidades para bajar el consumo energético y se muestran casos de uso de la plataforma así como pruebas de validación del diseño. La segunda parte del documento describe la arquitectura reconfigurable, su implementación en varias FPGAs, y pruebas de validación en términos de capacidad de procesamiento y consumo energético, incluyendo cómo estos aspectos se ven afectados por el nivel de tolerancia a fallos elegido. Los capítulos a lo largo del documento son los siguientes: El capítulo 1 analiza los principales objetivos, motivación y aspectos teóricos necesarios para seguir el resto del documento. El capítulo 2 está centrado en el diseño de la plataforma HiReCookie y sus posibilidades para disminuir el consumo de energía. El capítulo 3 describe la arquitectura reconfigurable ARTICo3. El capítulo 4 se centra en las pruebas de validación de la arquitectura usando la plataforma HiReCookie para la mayoría de los tests. Un ejemplo de aplicación es mostrado para analizar el funcionamiento de la arquitectura. El capítulo 5 concluye esta tesis doctoral comentando las conclusiones obtenidas, las contribuciones originales del trabajo y resultados y líneas futuras. ABSTRACT This PhD Thesis is framed within the field of dynamically reconfigurable embedded systems, advanced sensor networks and distributed computing. The document is centred on the study of processing solutions for high-performance autonomous distributed systems (HPADS) as well as their evolution towards High performance Computing (HPC) systems. The approach of the study is focused on both platform and processor levels to optimise critical aspects such as computing performance, energy efficiency and fault tolerance. HPADS are considered feedback systems, normally networked and/or distributed, with real-time adaptive and predictive functionality. These systems, as part of more complex systems known as Cyber-Physical Systems (CPSs), can be applied in a wide range of fields such as military, health care, manufacturing, aerospace, etc. For the design of HPADS, high levels of dependability, the definition of suitable models of computation, and the use of methodologies and tools to support scalability and complexity management, are required. The first part of the document studies the different possibilities at platform design level in the state of the art, together with description, development and validation tests of the platform proposed in this work to cope with the previously mentioned requirements. The main objectives targeted by this platform design are the following: • Study the feasibility of using SRAM-based FPGAs as the main processor of the platform in terms of energy consumption and performance for high demanding applications. • Analyse and propose energy management techniques to reduce energy consumption in every stage of the working profile of the platform. • Provide a solution with dynamic partial and wireless remote HW reconfiguration (DPR) to be able to change certain parts of the FPGA design at run time and on demand without interrupting the rest of the system. • Demonstrate the applicability of the platform in different test-bench applications. In order to select the best approach for the platform design in terms of processing alternatives, a study of the evolution of the state-of-the-art platforms is required to analyse how different architectures cope with new more demanding applications and scenarios: security, mixed-critical systems for aerospace, multimedia applications, or military environments, among others. In all these scenarios, important changes in the required processing bandwidth or the complexity of the algorithms used are provoking the migration of the platforms from single microprocessor architectures to multiprocessing and heterogeneous solutions with more instant power consumption but higher energy efficiency. Within these solutions, FPGAs and Systems on Chip including FPGA fabric and dedicated hard processors, offer a good trade of among flexibility, processing performance, energy consumption and price, when they are used in demanding applications where working conditions are very likely to vary over time and high complex algorithms are required. The platform architecture proposed in this PhD Thesis is called HiReCookie. It includes an SRAM-based FPGA as the main and only processing unit. The FPGA selected, the Xilinx Spartan-6 LX150, was at the beginning of this work the best choice in terms of amount of resources and power. Although, the power levels are the lowest of these kind of devices, they can be still very high for distributed systems that normally work powered by batteries. For that reason, it is necessary to include different energy saving possibilities to increase the usability of the platform. In order to reduce energy consumption, the platform architecture is divided into different power islands so that only those parts of the systems that are strictly needed are powered on, while the rest of the islands can be completely switched off. This allows a combination of different low power modes to decrease energy. In addition, one of the most important handicaps of SRAM-based FPGAs is that they are not alive at power up. Therefore, recovering the system from a switch-off state requires to reload the FPGA configuration from a non-volatile memory device. For that reason, this PhD Thesis also proposes a methodology to compress the FPGA configuration file in order to reduce time and energy during the initial configuration process. Although some of the requirements for the design of HPADS are already covered by the design of the HiReCookie platform, it is necessary to continue improving energy efficiency, computing performance and fault tolerance. This is only possible by exploiting all the opportunities provided by the processing architectures configured inside the FPGA. Therefore, the second part of the thesis details the design of the so called ARTICo3 FPGA architecture to enhance the already intrinsic capabilities of the FPGA. ARTICo3 is a DPR-capable bus-based virtual architecture for multiple HW acceleration in SRAM-based FPGAs. The architecture provides support for dynamic resource management in real time. In this way, by using DPR, it will be possible to change the levels of computing performance, energy consumption and fault tolerance on demand by increasing or decreasing the amount of resources used by the different tasks. Apart from the detailed design of the architecture and its implementation in different FPGA devices, different validation tests and comparisons are also shown. The main objectives targeted by this FPGA architecture are listed as follows: • Provide a method based on a multithread approach such as those offered by CUDA (Compute Unified Device Architecture) or OpenCL kernel executions, where kernels are executed in a variable number of HW accelerators without requiring application code changes. • Provide an architecture to dynamically adapt working points according to either self-measured or external parameters in terms of energy consumption, fault tolerance and computing performance. Taking advantage of DPR capabilities, the architecture must provide support for a dynamic use of resources in real time. • Exploit concurrent processing capabilities in a standard bus-based system by optimizing data transactions to and from HW accelerators. • Measure the advantage of HW acceleration as a technique to boost performance to improve processing times and save energy by reducing active times for distributed embedded systems. • Dynamically change the levels of HW redundancy to adapt fault tolerance in real time. • Provide HW abstraction from SW application design. FPGAs give the possibility of designing specific HW blocks for every required task to optimise performance while some of them include the possibility of including DPR. Apart from the possibilities provided by manufacturers, the way these HW modules are organised, addressed and multiplexed in area and time can improve computing performance and energy consumption. At the same time, fault tolerance and security techniques can also be dynamically included using DPR. However, the inherent complexity of designing new HW modules for every application is not negligible. It does not only consist of the HW description, but also the design of drivers and interfaces with the rest of the system, while the design space is widened and more complex to define and program. Even though the tools provided by the majority of manufacturers already include predefined bus interfaces, commercial IPs, and templates to ease application prototyping, it is necessary to improve these capabilities. By adding new architectures on top of them, it is possible to take advantage of parallelization and HW redundancy while providing a framework to ease the use of dynamic resource management. ARTICo3 works within a solution space where working points change at run time in a 3D space defined by three different axes: Computation, Consumption, and Fault Tolerance. Therefore, every working point is found as a trade-off solution among these three axes. By means of DPR, different accelerators can be multiplexed so that the amount of available resources for any application is virtually unlimited. Taking advantage of DPR capabilities and a novel way of transmitting data to the reconfigurable HW accelerators, it is possible to dedicate a dynamically-changing number of resources for a given task in order to either boost computing speed or adding HW redundancy and a voting process to increase fault-tolerance levels. At the same time, using an optimised amount of resources for a given task reduces energy consumption by reducing instant power or computing time. In order to keep level complexity under certain limits, it is important that HW changes are transparent for the application code. Therefore, different levels of transparency are targeted by the system: • Scalability transparency: a task must be able to expand its resources without changing the system structure or application algorithms. • Performance transparency: the system must reconfigure itself as load changes. • Replication transparency: multiple instances of the same task are loaded to increase reliability and performance. • Location transparency: resources are accessed with no knowledge of their location by the application code. • Failure transparency: task must be completed despite a failure in some components. • Concurrency transparency: different tasks will work in a concurrent way transparent to the application code. Therefore, as it can be seen, the Thesis is contributing in two different ways. First with the design of the HiReCookie platform and, second with the design of the ARTICo3 architecture. The main contributions of this PhD Thesis are then listed below: • Architecture of the HiReCookie platform including: o Compatibility of the processing layer for high performance applications with the Cookies Wireless Sensor Network platform for fast prototyping and implementation. o A division of the architecture in power islands. o All the different low-power modes. o The creation of the partial-initial bitstream together with the wake-up policies of the node. • The design of the reconfigurable architecture for SRAM FPGAs: ARTICo3: o A model of computation and execution modes inspired in CUDA but based on reconfigurable HW with a dynamic number of thread blocks per kernel. o A structure to optimise burst data transactions providing coalesced or parallel data to HW accelerators, parallel voting process and reduction operation. o The abstraction provided to the host processor with respect to the operation of the kernels in terms of the number of replicas, modes of operation, location in the reconfigurable area and addressing. o The architecture of the modules representing the thread blocks to make the system scalable by adding functional units only adding an access to a BRAM port. o The online characterization of the kernels to provide information to a scheduler or resource manager in terms of energy consumption and processing time when changing among different fault-tolerance levels, as well as if a kernel is expected to work in the memory-bounded or computing-bounded areas. The document of the Thesis is divided into two main parts with a total of five chapters. First, after motivating the need for new platforms to cover new more demanding applications, the design of the HiReCookie platform, its parts and several partial tests are detailed. The design of the platform alone does not cover all the needs of these applications. Therefore, the second part describes the architecture inside the FPGA, called ARTICo3, proposed in this PhD Thesis. The architecture and its implementation are tested in terms of energy consumption and computing performance showing different possibilities to improve fault tolerance and how this impact in energy and time of processing. Chapter 1 shows the main goals of this PhD Thesis and the technology background required to follow the rest of the document. Chapter 2 shows all the details about the design of the FPGA-based platform HiReCookie. Chapter 3 describes the ARTICo3 architecture. Chapter 4 is focused on the validation tests of the ARTICo3 architecture. An application for proof of concept is explained where typical kernels related to image processing and encryption algorithms are used. Further experimental analyses are performed using these kernels. Chapter 5 concludes the document analysing conclusions, comments about the contributions of the work, and some possible future lines for the work.
Resumo:
Los adhesivos se conocen y han sido utilizados en multitud de aplicaciones a lo lago de la historia. En la actualidad, la tecnología de la adhesión como método de unión de materiales estructurales está en pleno crecimiento. Los avances científicos han permitido comprender mejor los fenómenos de adhesión, así como, mejorar y desarrollar nuevas formulaciones poliméricas que incrementan el rango de aplicaciones de los adhesivos. Por otro lado, el desarrollo de nuevos materiales y la necesidad de aligerar peso, especialmente en el sector transporte, hace que las uniones adhesivas se introduzcan en aplicaciones hasta ahora reservadas a otros sistemas de unión como la soldadura o las uniones mecánicas, ofreciendo rendimientos similares y, en ocasiones, superiores a los aportados por estas. Las uniones adhesivas ofrecen numerosas ventajas frente a otros sistemas de unión. En la industria aeronáutica y en automoción, las uniones adhesivas logran una reducción en el número de componentes (tales como los tornillos, remaches, abrazaderas) consiguiendo como consecuencia diseños más ligeros y una disminución de los costes de manipulación y almacenamiento, así como una aceleración de los procesos de ensamblaje, y como consecuencia, un aumento de los procesos de producción. En el sector de la construcción y en la fabricación de equipos industriales, se busca la capacidad para soportar la expansión y contracción térmica. Por lo tanto, se usan las uniones adhesivas para evitar producir la distorsión del sustrato al no ser necesario el calentamiento ni la deformación de las piezas cuando se someten a un calentamiento elevado y muy localizado, como en el caso de la soldadura, o cuando se someten a esfuerzos mecánicos localizados, en el caso de montajes remachados. En la industria naval, se están desarrollando técnicas de reparación basadas en la unión adhesiva para distribuir de forma más uniforme y homogénea las tensiones con el objetivo de mejorar el comportamiento frente a fatiga y evitar los problemas asociados a las técnicas de reparación habituales de corte y soldadura. Las uniones adhesivas al no requerir importantes aportes de calor como la soldadura, no producen modificaciones microestructurales indeseables como sucede en la zona fundida o en la zona afectada térmicamente de las uniones soldadas, ni deteriora los recubrimientos protectores de metales de bajo punto de fusión o de naturaleza orgánica. Sin embargo, las uniones adhesivas presentan una desventaja que dificulta su aplicación, se trata de su durabilidad a largo plazo. La primera causa de rotura de los materiales es la rotura por fatiga. Este proceso de fallo es la causa del 85% de las roturas de los materiales estructurales en servicio. La rotura por fatiga se produce cuando se somete al material a la acción de cargas que varían cíclicamente o a vibraciones durante un tiempo prolongado. Las uniones y estructuras sometidas a fatiga pueden fallar a niveles de carga por debajo del límite de resistencia estática del material. La rotura por fatiga en las uniones adhesivas no se produce por un proceso de iniciación y propagación de grieta de forma estable, el proceso de fatiga va debilitando poco a poco la unión hasta que llega un momento que provoca una rotura de forma rápida. Underhill explica este mecanismo como un proceso de daño irreversible de los enlaces más débiles en determinados puntos de la unión. Cuando se ha producido el deterioro de estas zonas más débiles, su área se va incrementando hasta que llega un momento en que la zona dañada es tan amplia que se produce el fallo completo de la unión. En ensayos de crecimiento de grieta realizados sobre probetas preagrietadas en viga con doble voladizo (DCB), Dessureault identifica los procesos de iniciación y crecimiento de grietas en muestras unidas con adhesivo epoxi como una acumulación de microfisuras en la zona próxima al fondo de grieta que, luego, van coalesciendo para configurar la grieta principal. Lo que supone, igualmente, un proceso de daño del adhesivo en la zona de mayor concentración de tensiones que, posteriormente, conduce al fallo de la unión. La presente tesis surge con el propósito de aumentar los conocimientos existentes sobre el comportamiento a fatiga de las uniones adhesivas y especialmente las realizadas con dos tipos de adhesivos estructurales aplicados en aceros con diferentes acabados superficiales. El estudio incluye la obtención de las curvas de tensión frente al número de ciclos hasta el fallo del componente, curvas SN o curvas de Wöhler, que permitirán realizar una estimación de la resistencia a la fatiga de un determinado material o estructura. Los ensayos de fatiga realizados mediante ciclos predeterminados de carga sinusoidales, de amplitud y frecuencia constantes, han permitido caracterizar el comportamiento a la fatiga por el número de ciclos hasta la rotura, siendo el límite de fatiga el valor al que tiende la tensión cuando el número de ciclos es muy grande. En algunos materiales, la fatiga no tiende a un valor límite sino que decrece de forma constante a medida que aumenta el número de ciclos. Para estas situaciones, se ha definido la resistencia a la fatiga (o límite de resistencia) por la tensión en que se produce la rotura para un número de ciclos predeterminado. Todos estos aspectos permitirán un mejor diseño de las uniones y las condiciones de trabajo de los adhesivos con el fin de lograr que la resistencia a fatiga de la unión sea mucho más duradera y el comportamiento total de la unión sea mucho mejor, contribuyendo al crecimiento de la utilización de las uniones adhesivas respecto a otras técnicas. ABSTRACT Adhesives are well-known and have been used in many applications throughout history. At present, adhesion bonding technology of structural materials is experiencing an important growth. Scientific advances have enabled a better understanding of the phenomena of adhesion, as well as to improve and develop new polymeric formulations that increase the range of applications. On the other hand, the development of new materials and the need to save weight, especially in the transport sector, have promote the use of adhesive bonding in many applications previously reserved for other joining technologies such as welded or mechanical joints, presenting similar or even higher performances. Adhesive bonding offers many advantages over other joining methods. For example, in the aeronautic industry and in the automation sector, adhesive bonding allows a reduction in the number of components (such as bolts, rivets, clamps) and as consequence, resulting in lighter designs and a decrease in handling and storage costs, as well as faster assembly processes and an improvement in the production processes. In the construction sector and in the industrial equipment manufacturing, the ability to withstand thermal expansion and contraction is required. Therefore, adhesion bonding technology is used to avoid any distortion of the substrate since this technology does not require heating nor the deformation of the pieces when these are exposed to very high and localized heating, as in welding, or when are subjected to localized mechanical stresses in the case of riveted joints. In the naval industry, repair techniques based in the adhesive bonding are being developed in order to distribute stresses more uniform and homogeneously in order to improve the performance against fatigue and to avoid the problems associated with standard repair techniques as cutting and welding. Adhesive bonding does not require the use of high temperatures and as consequence they do not produce undesirable microstructural changes, as it can be observed in molten zones or in heat-affected zones in the case of welding, neither is there damage of the protective coating of metals with low melting points or polymeric films. However, adhesive bonding presents a disadvantage that limits its application, the low longterm durability. The most common cause of fractures of materials is fatigue fracture. This failure process is the cause of 85% of the fracture of structural materials in service. Fatigue failure occurs when the materials are subjected to the action of cyclic loads or vibrations for a long period of time. The joints and structures subjected to fatigue can fail at stress values below the static strength of the material. Fatigue failure do not occurs by a static and homogeneous process of initiation and propagation of crack. The fatigue process gradually weakens the bond until the moment in which the fracture occurs very rapidly. Underhill explains this mechanism as a process of irreversible damage of the weakest links at certain points of the bonding. When the deterioration in these weaker zones occurs, their area increase until the damage zone is so extensive that the full failure of the joint occurs. During the crack growth tests performed on precracked double-cantilever beam specimen, (DCB), Dessureault identified the processes of crack initiation and growth in samples bonded with epoxy adhesive as a process of accumulation of microcracks on the zone near the crack bottom, then, they coalesced to configure the main crack. This is a damage process of the adhesive in the zone of high stress concentration that leads to failure of the bond. This thesis aims to further the understanding of the fatigue behavior of the adhesive bonding, primarily those based on two different types of structural adhesives used on carbon-steel with different surface treatments. This memory includes the analysis of the SN or Wöhler curves (stress vs. number of cycles curves up to the failure), allowing to carry out an estimation of the fatigue strength of a specific material or structure. The fatigue tests carried out by means of predetermined cycles of sinusoidal loads, with a constant amplitude and frequency, allow the characterisation of the fatigue behaviour. For some materials, there is a maximum stress amplitude below which the material never fails for any number of cycles, known as fatigue limit. In the other hand, for other materials, the fatigue does not tend toward a limit value but decreases constantly as the number of cycles increases. For these situations, the fatigue strength is defined by the stress at which the fracture occurs for a predetermined number of cycles. All these aspects will enable a better joint design and service conditions of adhesives in order to get more durable joints from the fatigue failure point of view and in this way contribute to increase the use of adhesive bonding over other joint techniques.
Resumo:
Los fieltros son una familia de materiales textiles constituidos por una red desordenada de fibras conectadas por medio de enlaces térmicos, químicos o mecánicos. Presentan menor rigidez y resistencia (al igual que un menor coste de procesado) que sus homólogos tejidos, pero mayor deformabilidad y capacidad de absorción de energía. Los fieltros se emplean en diversas aplicaciones en ingeniería tales como aislamiento térmico, geotextiles, láminas ignífugas, filtración y absorción de agua, impacto balístico, etc. En particular, los fieltros punzonados fabricados con fibras de alta resistencia presentan una excelente resistencia frente a impacto balístico, ofreciendo las mismas prestaciones que los materiales tejidos con un tercio de la densidad areal. Sin embargo, se sabe muy poco acerca de los mecanismos de deformación y fallo a nivel microscópico, ni sobre como influyen en las propiedades mecánicas del material. Esta carencia de conocimiento dificulta la optimización del comportamiento mecánico de estos materiales y también limita el desarrollo de modelos constitutivos basados en mecanismos físicos, que puedan ser útiles en el diseño de componentes estructurales. En esta tesis doctoral se ha llevado a cabo un estudio minucioso con el fin de determinar los mecanismos de deformación y las propiedades mecánicas de fieltros punzonados fabricados con fibras de polietileno de ultra alto peso molecular. Los procesos de deformación y disipación de energía se han caracterizado en detalle por medio de una combinación de técnicas experimentales (ensayos mecánicos macroscópicos a velocidades de deformación cuasi-estáticas y dinámicas, impacto balístico, ensayos de extracción de una o múltiples fibras, microscopía óptica, tomografía computarizada de rayos X y difracción de rayos X de gran ángulo) que proporcionan información de los mecanismos dominantes a distintas escalas. Los ensayos mecánicos macroscópicos muestran que el fieltro presenta una resistencia y ductilidad excepcionales. El estado inicial de las fibras es curvado, y la carga se transmite por el fieltro a través de una red aleatoria e isótropa de nudos creada por el proceso de punzonamiento, resultando en la formación de una red activa de fibra. La rotación y el estirado de las fibras activas es seguido por el deslizamiento y extracción de la fibra de los puntos de anclaje mecánico. La mayor parte de la resistencia y la energía disipada es proporcionada por la extracción de las fibras activas de los nudos, y la fractura final tiene lugar como consecuencia del desenredo total de la red en una sección dada donde la deformación macroscópica se localiza. No obstante, aunque la distribución inicial de la orientación de las fibras es isótropa, las propiedades mecánicas resultantes (en términos de rigidez, resistencia y energía absorbida) son muy anisótropas. Los ensayos de extracción de múltiples fibras en diferentes orientaciones muestran que la estructura de los nudos conecta más fibras en la dirección transversal en comparación con la dirección de la máquina. La mejor interconectividad de las fibras a lo largo de la dirección transversal da lugar a una esqueleto activo de fibras más denso, mejorando las propiedades mecánicas. En términos de afinidad, los fieltros deformados a lo largo de la dirección transversal exhiben deformación afín (la deformación macroscópica transfiere directamente a las fibras por el material circundante), mientras que el fieltro deformado a lo largo de la dirección de la máquina presenta deformación no afín, y la mayor parte de la deformación macroscópica no es transmitida a las fibras. A partir de estas observaciones experimentales, se ha desarrollado un modelo constitutivo para fieltros punzonados confinados por enlaces mecánicos. El modelo considera los efectos de la deformación no afín, la conectividad anisótropa inducida durante el punzonamiento, la curvatura y re-orientación de la fibra, así como el desenredo y extracción de la fibra de los nudos. El modelo proporciona la respuesta de un mesodominio del material correspondiente al volumen asociado a un elemento finito, y se divide en dos bloques. El primer bloque representa el comportamiento de la red y establece la relación entre el gradiente de deformación macroscópico y la respuesta microscópica, obtenido a partir de la integración de la respuesta de las fibras en el mesodominio. El segundo bloque describe el comportamiento de la fibra, teniendo en cuenta las características de la deformación de cada familia de fibras en el mesodominio, incluyendo deformación no afín, estiramiento, deslizamiento y extracción. En la medida de lo posible, se ha asignado un significado físico claro a los parámetros del modelo, por lo que se pueden identificar por medio de ensayos independientes. Las simulaciones numéricas basadas en el modelo se adecúan a los resultados experimentales de ensayos cuasi-estáticos y balísticos desde el punto de vista de la respuesta mecánica macroscópica y de los micromecanismos de deformación. Además, suministran información adicional sobre la influencia de las características microstructurales (orientación de la fibra, conectividad de la fibra anisótropa, afinidad, etc) en el comportamiento mecánico de los fieltros punzonados. Nonwoven fabrics are a class of textile material made up of a disordered fiber network linked by either thermal, chemical or mechanical bonds. They present lower stiffness and strength (as well as processing cost) than the woven counterparts but much higher deformability and energy absorption capability and are used in many different engineering applications (including thermal insulation, geotextiles, fireproof layers, filtration and water absorption, ballistic impact, etc). In particular, needle-punched nonwoven fabrics manufactured with high strength fibers present an excellent performance for ballistic protection, providing the same ballistic protection with one third of the areal weight as compared to dry woven fabrics. Nevertheless, very little is known about their deformation and fracture micromechanisms at the microscopic level and how they contribute to the macroscopic mechanical properties. This lack of knowledge hinders the optimization of their mechanical performance and also limits the development of physically-based models of the mechanical behavior that can be used in the design of structural components with these materials. In this thesis, a thorough study was carried out to ascertain the micromechanisms of deformation and the mechanical properties of a needle-punched nonwoven fabric made up by ultra high molecular weight polyethylene fibers. The deformation and energy dissipation processes were characterized in detail by a combination of experimental techniques (macroscopic mechanical tests at quasi-static and high strain rates, ballistic impact, single fiber and multi fiber pull-out tests, optical microscopy, X-ray computed tomography and wide angle X-ray diffraction) that provided information of the dominant mechanisms at different length scales. The macroscopic mechanical tests showed that the nonwoven fabric presented an outstanding strength and energy absorption capacity. It was found that fibers were initially curved and the load was transferred within the fabric through the random and isotropic network of knots created by needlepunching, leading to the formation of an active fiber network. Uncurling and stretching of the active fibers was followed by fiber sliding and pull-out from the entanglement points. Most of the strength and energy dissipation was provided by the extraction of the active fibers from the knots and final fracture occurred by the total disentanglement of the fiber network in a given section at which the macroscopic deformation was localized. However, although the initial fiber orientation distribution was isotropic, the mechanical properties (in terms of stiffness, strength and energy absorption) were highly anisotropic. Pull-out tests of multiple fibers at different orientations showed that structure of the knots connected more fibers in the transverse direction as compared with the machine direction. The better fiber interconnection along the transverse direction led to a denser active fiber skeleton, enhancing the mechanical response. In terms of affinity, fabrics deformed along the transverse direction essentially displayed affine deformation {i.e. the macroscopic strain was directly transferred to the fibers by the surrounding fabric, while fabrics deformed along the machine direction underwent non-affine deformation, and most of the macroscopic strain was not transferred to the fibers. Based on these experimental observations, a constitutive model for the mechanical behavior of the mechanically-entangled nonwoven fiber network was developed. The model accounted for the effects of non-affine deformation, anisotropic connectivity induced by the entanglement points, fiber uncurling and re-orientation as well as fiber disentanglement and pull-out from the knots. The model provided the constitutive response for a mesodomain of the fabric corresponding to the volume associated to a finite element and is divided in two blocks. The first one was the network model which established the relationship between the macroscopic deformation gradient and the microscopic response obtained by integrating the response of the fibers in the mesodomain. The second one was the fiber model, which took into account the deformation features of each set of fibers in the mesodomain, including non-affinity, uncurling, pull-out and disentanglement. As far as possible, a clear physical meaning is given to the model parameters, so they can be identified by means of independent tests. The numerical simulations based on the model were in very good agreement with the experimental results of in-plane and ballistic mechanical response of the fabrics in terms of the macroscopic mechanical response and of the micromechanisms of deformation. In addition, it provided additional information about the influence of the microstructural features (fiber orientation, anisotropic fiber connectivity, affinity) on the mechanical performance of mechanically-entangled nonwoven fabrics.
Resumo:
El presente trabajo denominado “Modelo simplificado de neumático de automóvil en elementos finitos para análisis transitorio de las estructuras de los vehículos” ha sido elaborado en la cátedra de Transportes de la Escuela Técnica Superior de Ingenieros Industriales de la Universidad Politécnica de Madrid. Su principal objetivo es el modelado y estudio de un neumático mediante el programa de elementos finitos Ansys, con el fin de obtener datos fiables acerca de su comportamiento bajo distintas situaciones. Para ello, en primer lugar se han estudiado los distintos componentes que conforman los neumáticos, poniendo especial énfasis en los materiales, que son de vital importancia para el desarrollo del trabajo. Posteriormente, se ha analizado el fundamento matemático que subyace en los programas comerciales de elementos finitos, adquiriendo una mayor seguridad en el uso de éstos, así como un mejor conocimiento de las limitaciones que presentan. Básicamente, el método matemático de los elementos finitos (MEF) consiste en la discretización de problemas continuos para resolver problemas complejos, algo que por los métodos tradicionales sería inabordable con ese grado de precisión debido a la cantidad de variables manejadas. Es ampliamente utilizado hoy en día, y cada vez más, para resolver problemas de distintas disciplinas de la ingeniería como la Mecánica del Sólido, la Mecánica de Fluidos o el Electromagnetismo. Por otro lado, como los neumáticos son un sistema complejo, el estudio de su comportamiento ha supuesto y supone un desafío importante tanto para los propios fabricantes, como para las marcas de vehículos y, en el ámbito de este proyecto, para el equipo Upm Racing. En este Trabajo Fin de Grado se han investigado los distintos modelos de neumático que existen, los cuales según su fundamento matemático pueden ser clasificados en: - Modelos analíticos - Modelos empíricos - Modelos de elementos finitos Con la intención de desarrollar un modelo novedoso de elementos finitos, se ha puesto especial hincapié en conocer las distintas posibilidades para el modelizado de neumáticos, revisando una gran cantidad de publicaciones llevadas a cabo en los ámbitos académico y empresarial. Después de toda esta fase introductoria y de recogida de información se ha procedido a la realización del modelo. Éste tiene tres fases claramente diferenciadas que son: - Pre-procesado - Solución - Post-procesado La fase de pre-procesado comprende toda la caracterización del modelo real al modelo matemático. Para ello es necesario definir los materiales, la estructura de los refuerzos, la presión del aire, la llanta o las propiedades del contacto neumático-suelo. Además se lleva a cabo el mallado del modelo, que es la discretización de dicho modelo para después ser resuelto por los algoritmos del programa. Este mallado es sumamente importante puesto que en problemas altamente no-lineales como éste, una malla no adecuada puede dar lugar a conflictos en la resolución de los sistemas de ecuaciones, originando errores en la resolución. Otro aspecto que se ha de incluir en esta fase es la definición de las condiciones de contorno, que son aquellas condiciones impuestas al sistema que definen el estado inicial del éste. Un ejemplo en resolución de estructuras podría ser la imposición de giros y desplazamientos nulos en el extremo de una viga encontrarse empotrado en este punto. La siguiente fase es la de solución del modelo. En ella se aplican las cargas que se desean al sistema. Las principales que se han llevado a cabo han sido: desplazamientos del eje del neumático, rodadura del neumático con aceleración constante y rodadura del neumático con velocidad constante. La última fase es la de post-procesado. En esta etapa se analizan los resultados proporcionados por la resolución con el fin de obtener los datos de comportamiento del neumático que se deseen. Se han estudiado principalmente tres variables que se consideran de suma importancia: - Rigidez radial estática - Características de la huella de contacto - Coeficiente de resistencia a la rodadura Seguidamente, se presentan las conclusiones generales de estos resultados, reflexionando sobre los valores obtenidos, así como sobre los problemas surgidos durante la realización del trabajo. Además, se realiza una valoración de los impactos que puede suponer a nivel económico, social y medioambiental. Por último, se ha elaborado la planificación y presupuesto del proyecto para plasmar los tiempos de trabajo y sus costos. Además, se han propuesto líneas futuras con las que avanzar y/o completar este trabajo.
Resumo:
Históricamente la fractura ha sido considerada siempre como un efecto indeseado entre los materiales, dado que su aparición supone un cese del material en servicio, puesto que un material fracturado carece de importancia desde el punto de vista comercial. Consecuentemente, la Mecánica de Fractura ha experimentado un desarrollo importante en las últimas décadas como no lo hizo en toda la historia de los materiales. El desarrollo de nuevos campos a nivel científico y técnico han estado de la mano con el desarrollo de nuevos materiales que satisfagan las necesidades particulares de cada sector o aplicación. Este requerimiento se ve acentuado cuando se incorpora el aspecto económico, dado que, así como se necesitan materiales con mayor resistencia a la fractura, corrosión etc, también se necesita que su precio en el mercado sea accesible y que permita una aplicación rentable. En los últimos 70 años, desde los requerimientos de nuevos materiales resistentes a la fractura con los buques Liberty hasta el boom petrolero, pasando por las aplicaciones aeroespaciales se han desarrollado diversas teorías que explican el comportamiento de los materiales, en cuando a la tenacidad a la fractura en distintas temperaturas, composiciones químicas, materiales compuestos etc. Uno de los sectores que más ha demandado un desarrollo, por su amplitud en cuanto a requerimientos y consumo global, así como su impacto en la economía mundial, es el sector de gas, petróleo y petroquímica. Muchos de los proyectos que se intentaron desarrollar hasta hace menos de 25 años eran inviables por su elevado coste de ejecución y su bajo retorno de inversión debido a la caída de los precios del petróleo. Con una demanda creciente a nivel mundial y unos precios que apuntan hacia la estabilización o alza moderada, nuevos sistemas de trasporte por tuberías han sido necesarios desarrollar, desde el punto de vista de ingeniería, con el menos coste posible y de un modo seguro. Muchas de estas aplicaciones se vieron incrementadas cuando nuevos requerimientos en cuanto a resistencia a la corrosión fueron necesarios: demanda de materiales que no se corroan, con prestaciones seguras a nivel mecánico y un bajo coste. Esta nueva etapa se conoce como Aleaciones Resistentes a la Corrosión (CRA´s por sus siglas en inglés) en las cuales uno de los factores de diseño seguro recaían indiscutiblemente en la mecánica de fractura. Por estas razones era necesario entender como influía en la resistencia a la fractura las aportaciones que podrían hacerse sobre una superficie metálica. Al realizar el presente estudio se comenzó analizando la influencia que tenían modificaciones en el rango iónico sobre aceros al carbono. Estudios previos sobre láminas de acero ferrítico usadas en reactores de fisión nuclear demostraron que aportes de iones, en este particular el Helio, influían en el comportamiento de la tenacidad a la fractura en función de la temperatura. De este modo, un primer análisis fue hecho sobre la influencia de iones de nitrógeno aportados sobre superficies de acero al carbono y como modificaban su tenacidad a la fractura. Este primer análisis sirvió para comprobar el impacto que tenían pequeñas dosis de iones de nitrógeno en la tenacidad a la fractura. Otro desarrollo con una mayor aplicación industrial fue hecho sobre superficies de acero al carbono con aporte por soldadura de los materiales más usados para evitar la corrosión. El análisis se centró fundamentalmente en la influencia que tenían distintos materiales aportados como el MONEL 400, DUPLEX 928, INCONEL 625 y STAINLESS-STEEL 316 en referencia a características de diseño como la tensión elástica y la tensión a la rotura. Este análisis permitió conocer el impacto de los materiales aportados en los ensayos de tracción en probetas de acero al carbono. Una explicación acerca del comportamiento fue soportada por el análisis macrofractográfico de los perfiles fracturados y las macro deformaciones en la superficie de las probetas. Un posterior desarrollo teórico permitió modelar matemáticamente la fractura de las probetas aportadas por soldadura en la región elástica por medio de la Ley de Hooke, así como la teoría de Plasticidad de Hill para la región de deformación plástica. ABSTRACT Fracture mechanics has been extensively studied in the last 70 years by the constant requirements of new materials with low costs. These requirements have allowed surface modified welded materials in which it is necessary to know the influence of design fundamentals with the material surface welded. Several specimens have been studied for ductile fracture in longitudinal tensile tests for carbon steel surface-modified by weld overlay MONEL 400, DUPLEX 928, INCONEL 625 and STAINLESS-STEEL 316. Similarly of macro photographic analyzes to level the fractured surfaces that explain the behavior curves obtained in Tensile – displacement charts. The contribution of weld overlay material shows a significant impact on the yield and tensile stress of the specimens which was modeled according to Hooke's law for elastic area and Hill´s theory of plasticity to the plastic one.
Resumo:
Las características y capacidades de los aceros inoxidables sinterizados se han investigado en una doble vertiente. Por una parte con vista a sus capacidades de resistencia a la oxidación en caliente y por otra parte se ha investigado su capacidad para retener microorganismos que contribuyan a la descontaminación de un ambiente. Por ello, para cada una de estas funciones se han utilizado los aceros inoxidables sinterizados, que se han considerado más adecuados. Para estudiar sus capacidades de resistencia a la oxidación en caliente se ha utilizado un acero inoxidable austenítico AISI 304L, un acero inoxidable ferrítico AISI 430L y un acero inoxidable Fe-16Cr-3Al. Para estudiar sus capacidades para retener microorganismos se ha utilizado un acero inoxidable austenítico AISI 316L, un acero inoxidable ferrítico AISI 430L y un acero inoxidable dúplex 50%/50% de los anteriores. Para esta última finalidad los aceros se han compactado a tres diferentes presiones 300, 500 y 700 MPa, a las que corresponden diferentes porosidades. En relación con el comportamiento frente a la oxidación en caliente, se han cuantificado los incrementos positivos o negativos de volumen, masa y densidad en los diferentes tipos de sinterización y estados de tratamiento de oxidación. Como tónica general de comportamiento, puede decirse que los aceros sinterizados bajo vacío son más resistentes a la oxidación, que los sinterizados en atmósfera de N2-5H2 y que los aceros inoxidables austeníticos son algo más resistentes, que los Cr-Al y estos, a su vez, más que los aceros inoxidables ferríticos. Respecto a la retención de microorganismos, los tres aceros inoxidables sinterizados se han ensayado en diferentes medios de cultivo, utilizando cuatro especies de bacterias. Los mejores resultados se han obtenido con Staphylococcus aureus, muy favorable para su observación y recuento. Se han cuantificado, una vez sinterizados y colonizados por los microorganismos, para cada material y presión de compactación, las áreas de cada uno de los poros y el número de microorganismos situados en los poros y en la superficie sin poros. Se ha establecido en cada caso la densidad de microorganismos en las zonas de poros y en las zonas sin poros. Como tónica general puede decirse, que los aceros inoxidables austeníticos aparecen más favorables para estos estudios, que los aceros dúplex y estos más que los inoxidables ferríticos. Asimismo, se desprende que las áreas de los poros dependen de forma unívoca de la presión de compactación y que para áreas de poros decrecientes las densidades de microorganismos son crecientes. En consecuencia, podría deducirse, que a igualdad de área de poros en una superficie, aquella que tuviera los poros más pequeños, retendría mayor cantidad de bacterias. ABSTRACT The characteristics and capacities of sintered stainless steels have been researched from two perspectives: firstly, with a view to their resistance to hot oxidation, and secondly their capacity to retain microorganisms able to decontaminate the environment. For both these functions, sintered stainless steels were used, which are considered to be the most fit for purpose. To study their resistance to hot oxidation, we used austenitic stainless steel AISI 304L, ferritic stainless steel AISI 430L and stainless steel Fe-16Cr-3Al. To study their ability to retain microorganisms, we used austenitic stainless steel AISI 316L, ferritic stainless steel AISI 430L, and duplex stainless steel, being a 50/50 blend of the two former ones. For this last purpose, the steels were compacted at three different pressures (300, 500 and 700 MPa) corresponding to different porosities. With regard to the hot oxidation, we quantified the positive or negative increments in volume, mass and density in the different types of sintering and oxidation treatment states. As a general performance trend, we observed that vacuum sintered steels are more resistant to oxidation than those sintered in an atmosphere of N2-5H2, and that austenitic stainless steels are slightly more resistant than the Cr-Al steels which, in turn, are more resistant than the ferritic stainless steels. With regard to the retention of microorganisms, the three sintered stainless steels were tested in different culture media using four types of bacteria. The best results for observation and counting were obtained with Staphylococcus aureus bacteria. Once sintered and colonized by microorganisms, for each material and compacting pressure we quantified the areas of the pores and the number of microorganisms situated in the pores and on the pore-free surface. In each case, the density of microorganisms in the pores and in the pore-free areas was established. As a general rule, we can say that the austenitic stainless steels appear to be more favourable for this type of study than the duplex steels which, in turn, are more favourable than the ferritic stainless steels. It also emerged that the areas with the pores depend unequivocally on the compacting pressure, and that the smaller the area of the pore the higher the density of the microorganisms. Consequently, it can be deduced that comparing an equal area of pores on a surface, the one with the smaller pores would retain a larger number of bacteria.
Resumo:
En este trabajo, materiales de tipo alúmina/Y-TZP (ZrO2 tetragonal, estabilizada con 3 mol. % Y2O3), como sistema cerámico popular por sus mejoradas propiedades mecánicas en comparación con las cerámicas de alúmina puras, han sido estudiados en términos de propiedades mecánicas y tensiones residuales. El novedoso método de colado en cinta, consistente en el apilamiento de cintas de cerámica verde a temperatura ambiente y el uso de bajas presiones, se ha escogido para la presente investigación con el fin de poder aprovechar al máximo el futuro desarrollo de materiales laminados de alúmina-óxido de circonio. Se han determinado las propiedades de los materiales obtenidos por este nuevo método de procesamiento comparándolas con las de los materiales obtenidos por “slip casting”, con el fin de analizar si el método propuesto afecta a la microestructura y, por tanto, a las propiedades mecánicas y tensiones residuales propias de estos materiales. Para analizar la idoneidad del proceso de fabricación, utilizado para evitar la presencia de discontinuidades en las intercaras entre las láminas así como otros fenómenos que puedan interferir con las propiedades mecánicas, se estudiaron materiales cerámicos con la misma composición en cintas. Por otra parte también se analizó el efecto de la adición de óxido de circonio sobre la aparición de tensiónes residuales en cerámicas Al2O3/Y-TZP, teniendo en cuenta su notable influencia sobre las propiedades microestructurales y mecánicas de los materiales, así como el requisito de co-sinterización de capas con diferentes materiales compuestos en materiales laminados. La caracterización del material incluye la determinación de la densidad, el análisis de la microestructura, la obtención de las propiedades mecánicas (módulo de elasticidad, dureza, resistencia a la flexión y tenacidad de fractura) así como de las tensiones residuales. En combinación con otros métodos de medida tradicionales, la nanoindentación también se empleó como una técnica adicional para la medida del módulo de elasticidad y de la dureza. Por otro lado, diferentes técnicas de difracción con neutrones, tanto las basadas en longitud de onda constante (CW) como en tiempo de vuelo (TOF), han sido empleadas para la medición fiable de la deformación residual a través del grosor en muestras a granel. Las tensiones residuales fueron determinadas con elevada precisión, aplicando además métodos de análisis apropiados, como por ejemplo el refinamiento de Rietveld. Las diferentes fases en cerámicas sinterizadas, especialmente las de zirconia, se examinaron con detalle mediante el análisis de Rietveld, teniendo en cuenta el complicado polimorfismo del Óxido de Zirconio (ZrO2) así como las posibles transformaciones de fase durante el proceso de fabricación. Los efectos del contenido de Y-TZP en combinación con el nuevo método de procesamiento sobre la microestructura, el rendimiento mecánico y las tensiones residuales de los materiales estudiados (Al2O3/Y-TZP) se resumen en el presente trabajo. Finalmente, los mecanismos de endurecimiento, especialmente los relacionados con las tensiones residuales, son igualmente discutidos. In present work, Alumina/Y-TZP (tetragonal ZrO2 stabilized with 3 mol% Y2O3) materials, as an popular ceramic system with improved mechanical properties compared with the pure alumina ceramics, have been studied in terms of mechanical properties and residual stresses. The novel tape casting method, which involved the stacking of green ceramics tapes at room temperature and using low pressures, is selected for manufacturing and investigation, in order to take full advantage of the future development of alumina-zirconia laminated materials. Features of materials obtained by the new processing method are determined and compared with those of materials obtained by conventional slip casting in a plaster mold, in order to study whether the proposed method of processing affects microstructure and thereby the mechanical properties and residual stresses characteristics of materials. To analyse the adequacy of the manufacturing process used to avoid the presence of discontinuities at the interfaces between the sheets and other phenomena that interfere with the mechanical properties, ceramic materials with the same composition in tapes were investigated. Moreover, the effect of addition of zirconia on residual stress development of Al2O3/Y-TZP ceramics were taken into investigations, considering its significantly influence on the microstructure and mechanical properties of materials as well as the requirement of co-sintering of layers with different composites in laminated materials. The characterization includes density, microstructure, mechanical properties (elastic modulus, hardness, flexure strength and fracture toughness) and residual stresses. Except of the traditional measurement methods, nanoindentation technique was also used as an additional measurement of the elastic modulus and hardness. Neutron diffraction, both the constant-wavelength (CW) and time-of-flight (TOF) neutron diffraction techniques, has been used for reliable through-thickness residual strain measurement in bulk samples. Residual stresses were precisely determined combined with appropriate analysis methods, e.g. the Rietveld refinement. The phase compositions in sintered ceramics especially the ones of zirconia were accurately examined by Rietveld analysis, considering the complex polymorph of ZrO2 and the possible phase transformation during manufacturing process. Effects of Y-TZP content and the new processing method on the microstructure, mechanical performance and residual stresses were finally summarized in present studied Al2O3/Y-TZP materials. The toughening mechanisms, especially the residual stresses related toughening, were theoretically discussed.
Resumo:
En este trabajo se aborda una cuestión central en el diseño en carga última de estructuras de hormigón armado y de fábrica: la posibilidad efectiva de que las deformaciones plásticas necesarias para verificar un estado de rotura puedan ser alcanzadas por las regiones de la estructura que deban desarrollar su capacidad última para verificar tal estado. Así, se parte de las decisiones de diseño que mediante mera estática aseguran un equilibrio de la estructura para las cargas últimas que deba resistir, pero determinando directamente el valor de las deformaciones necesarias para llegar a tal estado. Por tanto, no se acude a los teoremas de rotura sin más, sino que se formula el problema desde un punto de vista elastoplástico. Es decir, no se obvia el recorrido que la estructura deba realizar en un proceso de carga incremental monótono, de modo que las regiones no plastificadas contribuyen a coaccionar las libres deformaciones plásticas que, en la teoría de rotura, se suponen. En términos de trabajo y energía, se introduce en el balance del trabajo de las fuerzas externas y en el de la energía de deformación, aquella parte del sistema que no ha plastificado. Establecido así el balance energético como potencial del sistema es cuando la condición de estacionariedad del mismo hace determinados los campos de desplazamientos y, por tanto, el de las deformaciones plásticas también. En definitiva, se trata de un modo de verificar si la ductilidad de los diseños previstos es suficiente, y en qué medida, para verificar el estado de rotura previsto, para unas determinadas cargas impuestas. Dentro del desarrollo teórico del problema, se encuentran ciertas precisiones importantes. Entre ellas, la verificación de que el estado de rotura a que se llega de manera determinada mediante el balance energético elasto-plástico satisface las condiciones de la solución de rotura que los teoremas de carga última predicen, asegurando, por tanto, que la solución determinada -unicidad del problema elásticocoincide con el teorema de unicidad de la carga de rotura, acotando además cuál es el sistema de equilibrio y cuál es la deformada de colapso, aspectos que los teoremas de rotura no pueden asegurar, sino sólo el valor de la carga última a verificar. Otra precisión se basa en la particularidad de los casos en que el sistema presenta una superficie de rotura plana, haciendo infinitas las posibilidades de equilibrio para una misma deformada de colapso determinada, lo que está en la base de, aparentemente, poder plastificar a antojo en vigas y arcos. Desde el planteamiento anterior, se encuentra entonces que existe una condición inherente a cualquier sistema, definidas unas leyes constitutivas internas, que permite al mismo llegar al inicio del estado de rotura sin demandar deformación plástica alguna, produciéndose la plastificación simultánea de todas las regiones que hayan llegado a su solicitación de rotura. En cierto modo, se daría un colapso de apariencia frágil. En tal caso, el sistema conserva plenamente hasta el final su capacidad dúctil y tal estado actúa como representante canónico de cualquier otra solución de equilibrio que con idéntico criterio de diseño interno se prevea para tal estructura. En la medida que el diseño se acerque o aleje de la solución canónica, la demanda de ductilidad del sistema para verificar la carga última será menor o mayor. Las soluciones que se aparten en exceso de la solución canónica, no verificarán el estado de rotura previsto por falta de ductilidad: la demanda de deformación plástica de alguna región plastificada estará más allá de la capacidad de la misma, revelándose una carga de rotura por falta de ductilidad menor que la que se preveía por mero equilibrio. Para la determinación de las deformaciones plásticas de las rótulas, se ha tomado un modelo formulado mediante el Método de los Elementos de Contorno, que proporciona un campo continuo de desplazamientos -y, por ende, de deformaciones y de tensiones- incluso en presencia de fisuras en el contorno. Importante cuestión es que se formula la diferencia, nada desdeñable, de la capacidad de rotación plástica de las secciones de hormigón armado en presencia de cortante y en su ausencia. Para las rótulas de fábrica, la diferencia se establece para las condiciones de la excentricidad -asociadas al valor relativo de la compresión-, donde las diferencias entres las regiones plastificadas con esfuerzo normal relativo alto o bajo son reseñables. Por otro lado, si bien de manera un tanto secundaria, las condiciones de servicio también imponen un límite al diseño previo en carga última deseado. La plastificación lleva asociadas deformaciones considerables, sean locales como globales. Tal cosa impone que, en estado de servicio, si la plastificación de alguna región lleva asociadas fisuraciones excesivas para el ambiente del entorno, la solución sea inviable por ello. Asimismo, las deformaciones de las estructuras suponen un límite severo a las posibilidades de su diseño. Especialmente en edificación, las deformaciones activas son un factor crítico a la hora de decidirse por una u otra solución. Por tanto, al límite que se impone por razón de ductilidad, se debe añadir el que se imponga por razón de las condiciones de servicio. Del modo anterior, considerando las condiciones de ductilidad y de servicio en cada caso, se puede tasar cada decisión de diseño con la previsión de cuáles serán las consecuencias en su estado de carga última y de servicio. Es decir, conocidos los límites, podemos acotar cuáles son los diseños a priori que podrán satisfacer seguro las condiciones de ductilidad y de servicio previstas, y en qué medida. Y, en caso de no poderse satisfacer, qué correcciones debieran realizarse sobre el diseño previo para poderlas cumplir. Por último, de las consecuencias que se extraen de lo estudiado, se proponen ciertas líneas de estudio y de experimentación para poder llegar a completar o expandir de manera práctica los resultados obtenidos. ABSTRACT This work deals with a main issue for the ultimate load design in reinforced concrete and masonry structures: the actual possibility that needed yield strains to reach a ultimate state could be reached by yielded regions on the structure that should develop their ultimate capacity to fulfill such a state. Thus, some statically determined design decisions are posed as a start for prescribed ultimate loads to be counteracted, but finding out the determined value of the strains needed to reach the ultimate load state. Therefore, ultimate load theorems are not taken as they are, but a full elasto-plastic formulation point of view is used. As a result, the path the structure must develop in a monotonus increasing loading procedure is not neglected, leading to the fact that non yielded regions will restrict the supposed totally free yield strains under a pure ultimate load theory. In work and energy terms, in the overall account of external forces work and internal strain energy, those domains in the body not reaching their ultimate state are considered. Once thus established the energy balance of the system as its potential, by imposing on it the stationary condition, both displacements and yield strains appear as determined values. Consequently, what proposed is a means for verifying whether the ductility of prescribed designs is enough and the extent to which they are so, for known imposed loads. On the way for the theoretical development of the proposal, some important aspects have been found. Among these, the verification that the conditions for the ultimate state reached under the elastoplastic energy balance fulfills the conditions prescribed for the ultimate load state predicted through the ultimate load theorems, assuring, therefore, that the determinate solution -unicity of the elastic problemcoincides with the unicity ultimate load theorem, determining as well which equilibrium system and which collapse shape are linked to it, being these two last aspects unaffordable by the ultimate load theorems, that make sure only which is the value of the ultimate load leading to collapse. Another aspect is based on the particular case in which the yield surface of the system is flat -i.e. expressed under a linear expression-, turning out infinite the equilibrium possibilities for one determined collapse shape, which is the basis of, apparently, deciding at own free will the yield distribution in beams and arches. From the foresaid approach, is then found that there is an inherent condition in any system, once defined internal constitutive laws, which allows it arrive at the beginning of the ultimate state or collapse without any yield strain demand, reaching the collapse simultaneously for all regions that have come to their ultimate strength. In a certain way, it would appear to be a fragile collapse. In such a case case, the system fully keeps until the end its ductility, and such a state acts as a canonical representative of any other statically determined solution having the same internal design criteria that could be posed for the that same structure. The extent to which a design is closer to or farther from the canonical solution, the ductility demand of the system to verify the ultimate load will be higher or lower. The solutions being far in excess from the canonical solution, will not verify the ultimate state due to lack of ductility: the demand for yield strains of any yielded region will be beyond its capacity, and a shortcoming ultimate load by lack of ductility will appear, lower than the expected by mere equilibrium. For determining the yield strains of plastic hinges, a Boundary Element Method based model has been used, leading to a continuous displacement field -therefore, for strains and stresses as well- even if cracks on the boundary are present. An important aspect is that a remarkable difference is found in the rotation capacity between plastic hinges in reinforced concrete with or without shear. For masonry hinges, such difference appears when dealing with the eccentricity of axial forces -related to their relative value of compression- on the section, where differences between yield regions under high or low relative compressions are remarkable. On the other hand, although in a certain secondary manner, serviceability conditions impose limits to the previous ultimate load stated wanted too. Yield means always big strains and deformations, locally and globally. Such a thing imposes, for serviceability states, that if a yielded region is associated with too large cracking for the environmental conditions, the predicted design will be unsuitable due to this. Furthermore, displacements must be restricted under certain severe limits that restrain the possibilities for a free design. Especially in building structures, active displacements are a critical factor when chosing one or another solution. Then, to the limits due to ductility reasons, other limits dealing with serviceability conditions shoud be added. In the foresaid way, both considering ductility and serviceability conditions in every case, the results for ultimate load and serviceability to which every design decision will lead can be bounded. This means that, once the limits are known, it is possible to bound which a priori designs will fulfill for sure the prescribed ductility and serviceability conditions, and the extent to wich they will be fulfilled, And, in case they were not, which corrections must be performed in the previous design so that it will. Finally, from the consequences derived through what studied, several study and experimental fields are proposed, in order to achieve a completeness and practical expansion of the obtained results.
Resumo:
Este proyecto aborda el diseño de unas etiquetas de eficiencia energética, a través del estudio del yeso de construcción, designado como B1. Con el fin de analizar la eficiencia energética del yeso citado se determina de forma experimental la conductividad térmica según el método del hilo caliente, de acuerdo a la normas ASTM D5334-08. Además, se procede también al estudio del resto de propiedades higrotérmicas reflejadas en el Código Técnico de Edificación (CTE), como son la densidad, el calor específico y el factor de resistencia a la difusividad del vapor de agua. A partir de los resultados de estos ensayos, se lleva a cabo el diseño de unas etiquetas de eficiencia energética con escala de letras de la A a la G, las cuales permitirán un reconocimiento visual de la características buscadas y más significativas, que tras el estudio de los resultados obtenidos, resultan ser la conductividad térmica y el factor de resistencia a la difusividad del agua. Finalmente, se diseña una etiqueta de eficiencia energética final, como combinación de las dos anteriores y que permite la clasificación de los materiales de construcción a partir de ambas propiedades higrotérmicas. Esta última etiqueta de eficiencia energética tendrá una escala desde la A++ hasta la G.
Resumo:
Lo primero que se encontrará el lector y lectora en este cuadernillo es una breve y esquemática aproximación o contextualización histórica al uso de las redes telemáticas en política (2). Decía Wright Mills que “muchas veces tenemos que estudiar la historia para librarnos de ella”. De esta forma, una vez enmarcados y ubicados nuestros principales protagonistas, podemos olvidarnos (temporalmente) de esa historia que los ha llevado hasta donde ahora estamos. Además, en este trabajo hemos preferido optar por ecamino empírico, aquel que busca y encuentra casos prácticos a cada paso y que iluminan la senda. Muchas teorizaciones yerran sus análisis o profecías por apresurarse a afirmar categóricamente sin mirar fuera. Nosotros hemos optado por observar de cerca y quedarnos con muchos de los procesos que están, actualmente, en marcha. Es por ello que hemos dedicado gran parte de nuestra aportación a describir algunos casos que hemos valorado como relevantes: el tipo de acceso de las organizaciones sociales a las nuevas tecnologías (3.1), las movilizaciones contra la guerra y el papel de Internet en ellas (3.2) y la aparición de un nuevo movimiento social, los hackers (3.3). A continuación introducimos una pequeña encuesta de producción propia (4) que nos permitirá comparar con otros estudios realizados y sacar alguna conclusión tal vez aventurada. Finalmente dedicamos una parte considerable del estudio (5) a eso que se ha venido denominando la antiglobalización (los movimientos de resistencia a la globalización capitalista) y, en concreto, al papel de un recurso telemático nuevo y sumamente interesante, Indymedia (6), que aparece como complemento de los movimientos antes señalados. La intención final no es otra que obtener una radiografía aproximada de qué pasa y qué se mueve por las fibras y los cables de las redes que nos surcan y surcamos.
Resumo:
En el presente trabajo se han estudiado mediante DSC, las reacciones involucradas en el tratamiento térmico de los principales componentes en las formulaciones de materiales espumados como son EVA, PE, azodicarbonamida y α- α’-bis(tertbutil-peroxi)-m/p-diisopropilbenceno. Los ensayos se han realizado a una velocidad de calefacción constante de 10 ºC/min en atmósfera inerte de N2. Por otro lado, también se proponen una serie de modelos cinéticos mecanísticos que contemplan la existencia de una o más fracciones reactivas y/o reacciones. Además se ha introducido la variación de las capacidades caloríficas con la temperatura, consiguiendo de esta forma una mejora considerable del ajuste de los datos experimentales. Los modelos presentados son capaces de representar los diferentes procesos observados (con varios picos) y pueden ser de gran interés para la compresión de este tipo de fenómenos, así como para el modelado de la transferencia de calor que se produce durante los procesos industriales de espumado. (Nota: se incluye al final un lisado actualizado con bibliografía específica sobre modelado cinético).
Resumo:
La elección de examinar la contrarrevolución a través de sus mayores éxitos, las cuatro restauraciones victoriosas, y su derrota, la restauración fallida, puede enriquecer las perspectivas tradicionales sobre la resistencia y la crisis del Reino de las dos Sicilias. Los conflictos europeos, las guerras civiles, las construcciones estatales y la creación de identidades nacionales modernas son fenómenos que se entrecruzan con la complicada historia del reino napolitano. A través de la perspectiva de las restauraciones, bien dinásticas (1799 y 1815), o bien absolutistas (1821 y 1849), podemos insertar en un esquema interpretativo general la dialéctica entre conflicto interno y crisis internacionales, la interrelación con la formación de las ideas y adscripciones nacionalistas y la comparación con la contrarrevolución en el mundo borbónico. El paradigma del conflicto nos permite también el contraste con el más amplio mundo borbónico, francés y, sobre todo, iberoamericano. De este modo podemos reflexionar tanto sobre el éxito del legitimismo napolitano como sobre los términos de su derrota en 1860 y sobre las razones de su reciente fortuna en el imaginario colectivo italiano.
Resumo:
El militante y académico brasileño Ruy Mauro Marini es habitualmente reconocido como uno de los principales referentes dentro de lo que se ha dado a conocer como la vertiente marxista de la Teoría de la Dependencia, de gran relevancia en el debate político y social latinoamericano durante las décadas de 1960 y 1970. En este artículo, nuestra intención es revisitar algunos de sus principales aportes al pensamiento crítico de nuestra región, pero -más allá de situarlos históricamente- afirmaremos que se trata de un autor con plena vigencia para la compresión de la legalidad específica de las leyes del capitalismo en economías dependientes, el debate sobre la inserción internacional de la región y el rol de los movimientos sociales en el siglo XXI. Además de algunas ineludibles referencias a su trayectoria de vida personal, nos abocaremos fundamentalmente a analizar cómo entiende Marini el Ciclo Dependiente, lo cual es indisoluble de los conceptos de Subimperialismo, de Superexplotación de la fuerza de trabajo y de Cooperación antagónica.