957 resultados para region-based algorithms


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sendo uma forma natural de interação homem-máquina, o reconhecimento de gestos implica uma forte componente de investigação em áreas como a visão por computador e a aprendizagem computacional. O reconhecimento gestual é uma área com aplicações muito diversas, fornecendo aos utilizadores uma forma mais natural e mais simples de comunicar com sistemas baseados em computador, sem a necessidade de utilização de dispositivos extras. Assim, o objectivo principal da investigação na área de reconhecimento de gestos aplicada à interacção homemmáquina é o da criação de sistemas, que possam identificar gestos específicos e usálos para transmitir informações ou para controlar dispositivos. Para isso as interfaces baseados em visão para o reconhecimento de gestos, necessitam de detectar a mão de forma rápida e robusta e de serem capazes de efetuar o reconhecimento de gestos em tempo real. Hoje em dia, os sistemas de reconhecimento de gestos baseados em visão são capazes de trabalhar com soluções específicas, construídos para resolver um determinado problema e configurados para trabalhar de uma forma particular. Este projeto de investigação estudou e implementou soluções, suficientemente genéricas, com o recurso a algoritmos de aprendizagem computacional, permitindo a sua aplicação num conjunto alargado de sistemas de interface homem-máquina, para reconhecimento de gestos em tempo real. A solução proposta, Gesture Learning Module Architecture (GeLMA), permite de forma simples definir um conjunto de comandos que pode ser baseado em gestos estáticos e dinâmicos e que pode ser facilmente integrado e configurado para ser utilizado numa série de aplicações. É um sistema de baixo custo e fácil de treinar e usar, e uma vez que é construído unicamente com bibliotecas de código. As experiências realizadas permitiram mostrar que o sistema atingiu uma precisão de 99,2% em termos de reconhecimento de gestos estáticos e uma precisão média de 93,7% em termos de reconhecimento de gestos dinâmicos. Para validar a solução proposta, foram implementados dois sistemas completos. O primeiro é um sistema em tempo real capaz de ajudar um árbitro a arbitrar um jogo de futebol robótico. A solução proposta combina um sistema de reconhecimento de gestos baseada em visão com a definição de uma linguagem formal, o CommLang Referee, à qual demos a designação de Referee Command Language Interface System (ReCLIS). O sistema identifica os comandos baseados num conjunto de gestos estáticos e dinâmicos executados pelo árbitro, sendo este posteriormente enviado para um interface de computador que transmite a respectiva informação para os robôs. O segundo é um sistema em tempo real capaz de interpretar um subconjunto da Linguagem Gestual Portuguesa. As experiências demonstraram que o sistema foi capaz de reconhecer as vogais em tempo real de forma fiável. Embora a solução implementada apenas tenha sido treinada para reconhecer as cinco vogais, o sistema é facilmente extensível para reconhecer o resto do alfabeto. As experiências também permitiram mostrar que a base dos sistemas de interação baseados em visão pode ser a mesma para todas as aplicações e, deste modo facilitar a sua implementação. A solução proposta tem ainda a vantagem de ser suficientemente genérica e uma base sólida para o desenvolvimento de sistemas baseados em reconhecimento gestual que podem ser facilmente integrados com qualquer aplicação de interface homem-máquina. A linguagem formal de definição da interface pode ser redefinida e o sistema pode ser facilmente configurado e treinado com um conjunto de gestos diferentes de forma a serem integrados na solução final.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a genetic algorithm for the Resource Constrained Project Scheduling Problem (RCPSP). The chromosome representation of the problem is based on random keys. The schedule is constructed using a heuristic priority rule in which the priorities of the activities are defined by the genetic algorithm. The heuristic generates parameterized active schedules. The approach was tested on a set of standard problems taken from the literature and compared with other approaches. The computational results validate the effectiveness of the proposed algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

17 of 20 adult sera from the Amapa region of Brazil were active in the inhibition of P. falciparum sporozoite invasion (ISI) assay which has been correlated with protective antibodies. In contrast 11 sera were positive in IFA tests and 6 were positive in CSP tests. These results suggest that the ISI assay will be useful for evaluating naturally acquired protective anti-sporozoite antibodies in endemic areas, particularly during vaccine efficacy studies using sporozoite-based vaccines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fuzzy logic controllers (FLC) are intelligent systems, based on heuristic knowledge, that have been largely applied in numerous areas of everyday life. They can be used to describe a linear or nonlinear system and are suitable when a real system is not known or too difficult to find their model. FLC provide a formal methodology for representing, manipulating and implementing a human heuristic knowledge on how to control a system. These controllers can be seen as artificial decision makers that operate in a closed-loop system, in real time. The main aim of this work was to develop a single optimal fuzzy controller, easily adaptable to a wide range of systems – simple to complex, linear to nonlinear – and able to control all these systems. Due to their efficiency in searching and finding optimal solution for high complexity problems, GAs were used to perform the FLC tuning by finding the best parameters to obtain the best responses. The work was performed using the MATLAB/SIMULINK software. This is a very useful tool that provides an easy way to test and analyse the FLC, the PID and the GAs in the same environment. Therefore, it was proposed a Fuzzy PID controller (FL-PID) type namely, the Fuzzy PD+I. For that, the controller was compared with the classical PID controller tuned with, the heuristic Ziegler-Nichols tuning method, the optimal Zhuang-Atherton tuning method and the GA method itself. The IAE, ISE, ITAE and ITSE criteria, used as the GA fitness functions, were applied to compare the controllers performance used in this work. Overall, and for most systems, the FL-PID results tuned with GAs were very satisfactory. Moreover, in some cases the results were substantially better than for the other PID controllers. The best system responses were obtained with the IAE and ITAE criteria used to tune the FL-PID and PID controllers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação apresentada na faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hard real- time multiprocessor scheduling has seen, in recent years, the flourishing of semi-partitioned scheduling algorithms. This category of scheduling schemes combines elements of partitioned and global scheduling for the purposes of achieving efficient utilization of the system’s processing resources with strong schedulability guarantees and with low dispatching overheads. The sub-class of slot-based “task-splitting” scheduling algorithms, in particular, offers very good trade-offs between schedulability guarantees (in the form of high utilization bounds) and the number of preemptions/migrations involved. However, so far there did not exist unified scheduling theory for such algorithms; each one was formulated in its own accompanying analysis. This article changes this fragmented landscape by formulating a more unified schedulability theory covering the two state-of-the-art slot-based semi-partitioned algorithms, S-EKG and NPS-F (both fixed job-priority based). This new theory is based on exact schedulability tests, thus also overcoming many sources of pessimism in existing analysis. In turn, since schedulability testing guides the task assignment under the schemes in consideration, we also formulate an improved task assignment procedure. As the other main contribution of this article, and as a response to the fact that many unrealistic assumptions, present in the original theory, tend to undermine the theoretical potential of such scheduling schemes, we identified and modelled into the new analysis all overheads incurred by the algorithms in consideration. The outcome is a new overhead-aware schedulability analysis that permits increased efficiency and reliability. The merits of this new theory are evaluated by an extensive set of experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação apresentada para obtenção do Grau de Doutor em Engenharia Electrotécnica, Especialidade de Sistemas Digitais, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hyperspectral imaging has become one of the main topics in remote sensing applications, which comprise hundreds of spectral bands at different (almost contiguous) wavelength channels over the same area generating large data volumes comprising several GBs per flight. This high spectral resolution can be used for object detection and for discriminate between different objects based on their spectral characteristics. One of the main problems involved in hyperspectral analysis is the presence of mixed pixels, which arise when the spacial resolution of the sensor is not able to separate spectrally distinct materials. Spectral unmixing is one of the most important task for hyperspectral data exploitation. However, the unmixing algorithms can be computationally very expensive, and even high power consuming, which compromises the use in applications under on-board constraints. In recent years, graphics processing units (GPUs) have evolved into highly parallel and programmable systems. Specifically, several hyperspectral imaging algorithms have shown to be able to benefit from this hardware taking advantage of the extremely high floating-point processing performance, compact size, huge memory bandwidth, and relatively low cost of these units, which make them appealing for onboard data processing. In this paper, we propose a parallel implementation of an augmented Lagragian based method for unsupervised hyperspectral linear unmixing on GPUs using CUDA. The method called simplex identification via split augmented Lagrangian (SISAL) aims to identify the endmembers of a scene, i.e., is able to unmix hyperspectral data sets in which the pure pixel assumption is violated. The efficient implementation of SISAL method presented in this work exploits the GPU architecture at low level, using shared memory and coalesced accesses to memory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arguably, the most difficult task in text classification is to choose an appropriate set of features that allows machine learning algorithms to provide accurate classification. Most state-of-the-art techniques for this task involve careful feature engineering and a pre-processing stage, which may be too expensive in the emerging context of massive collections of electronic texts. In this paper, we propose efficient methods for text classification based on information-theoretic dissimilarity measures, which are used to define dissimilarity-based representations. These methods dispense with any feature design or engineering, by mapping texts into a feature space using universal dissimilarity measures; in this space, classical classifiers (e.g. nearest neighbor or support vector machines) can then be used. The reported experimental evaluation of the proposed methods, on sentiment polarity analysis and authorship attribution problems, reveals that it approximates, sometimes even outperforms previous state-of-the-art techniques, despite being much simpler, in the sense that they do not require any text pre-processing or feature engineering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This document presents a tool able to automatically gather data provided by real energy markets and to generate scenarios, capture and improve market players’ profiles and strategies by using knowledge discovery processes in databases supported by artificial intelligence techniques, data mining algorithms and machine learning methods. It provides the means for generating scenarios with different dimensions and characteristics, ensuring the representation of real and adapted markets, and their participating entities. The scenarios generator module enhances the MASCEM (Multi-Agent Simulator of Competitive Electricity Markets) simulator, endowing a more effective tool for decision support. The achievements from the implementation of the proposed module enables researchers and electricity markets’ participating entities to analyze data, create real scenarios and make experiments with them. On the other hand, applying knowledge discovery techniques to real data also allows the improvement of MASCEM agents’ profiles and strategies resulting in a better representation of real market players’ behavior. This work aims to improve the comprehension of electricity markets and the interactions among the involved entities through adequate multi-agent simulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The restructuring of electricity markets, conducted to increase the competition in this sector, and decrease the electricity prices, brought with it an enormous increase in the complexity of the considered mechanisms. The electricity market became a complex and unpredictable environment, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. Software tools became, therefore, essential to provide simulation and decision support capabilities, in order to potentiate the involved players’ actions. This paper presents the development of a metalearner, applied to the decision support of electricity markets’ negotiation entities. The proposed metalearner executes a dynamic artificial neural network to create its own output, taking advantage on several learning algorithms implemented in ALBidS, an adaptive learning system that provides decision support to electricity markets’ players. The proposed metalearner considers different weights for each strategy, depending on its individual quality of performance. The results of the proposed method are studied and analyzed in scenarios based on real electricity markets’ data, using MASCEM - a multi-agent electricity market simulator that simulates market players’ operation in the market.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an electricity medium voltage (MV) customer characterization framework supportedby knowledge discovery in database (KDD). The main idea is to identify typical load profiles (TLP) of MVconsumers and to develop a rule set for the automatic classification of new consumers. To achieve ourgoal a methodology is proposed consisting of several steps: data pre-processing; application of severalclustering algorithms to segment the daily load profiles; selection of the best partition, corresponding tothe best consumers’ segmentation, based on the assessments of several clustering validity indices; andfinally, a classification model is built based on the resulting clusters. To validate the proposed framework,a case study which includes a real database of MV consumers is performed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A análise forense de documentos é uma das áreas das Ciências Forenses, responsável pela verificação da autenticidade dos documentos. Os documentos podem ser de diferentes tipos, sendo a moeda ou escrita manual as evidências forenses que mais frequentemente motivam a análise. A associação de novas tecnologias a este processo de análise permite uma melhor avaliação dessas evidências, tornando o processo mais célere. Esta tese baseia-se na análise forense de dois tipos de documentos - notas de euro e formulários preenchidos por escrita manual. Neste trabalho pretendeu-se desenvolver técnicas de processamento e análise de imagens de evidências dos tipos referidos com vista a extração de medidas que permitam aferir da autenticidade dos mesmos. A aquisição das imagens das notas foi realizada por imagiologia espetral, tendo-se definidas quatro modalidades de aquisição: luz visível transmitida, luz visível refletida, ultravioleta A e ultravioleta C. Para cada uma destas modalidades de aquisição, foram também definidos 2 protocolos: frente e verso. A aquisição das imagens dos documentos escritos manualmente efetuou-se através da digitalização dos mesmos com recurso a um digitalizador automático de um aparelho multifunções. Para as imagens das notas desenvolveram-se vários algoritmos de processamento e análise de imagem, específicos para este tipo de evidências. Esses algoritmos permitem a segmentação da região de interesse da imagem, a segmentação das sub-regiões que contém as marcas de segurança a avaliar bem como da extração de algumas características. Relativamente as imagens dos documentos escritos manualmente, foram também desenvolvidos algoritmos de segmentação que permitem obter todas as sub-regiões de interesse dos formulários, de forma a serem analisados os vários elementos. Neste tipo de evidências, desenvolveu-se ainda um algoritmo de análise para os elementos correspondentes à escrita de uma sequência numérica o qual permite a obtenção das imagens correspondentes aos caracteres individuais. O trabalho desenvolvido e os resultados obtidos permitiram a definição de protocolos de aquisição de imagens destes tipos de evidências. Os algoritmos automáticos de segmentação e análise desenvolvidos ao longo deste trabalho podem ser auxiliares preciosos no processo de análise da autenticidade dos documentos, o qual, ate então, é feito manualmente. Apresentam-se ainda os resultados dos estudos feitos às diversas evidências, nomeadamente as performances dos diversos algoritmos analisados, bem como algumas das adversidades encontradas durante o processo. Apresenta-se também uma discussão da metodologia adotada e dos resultados, bem como de propostas de continuação deste trabalho, nomeadamente, a extração de características e a implementação de classificadores capazes aferir da autenticidade dos documentos.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Work presented in the context of the European Master in Computational Logics, as partial requisit for the graduation as Master in Computational Logics